Recent progress in transparent conducting materials by use of metallic grids on metaloxides


Alternatives to ITO are under heavy investigation. Organic and inorganic transparent conducting materials are compared based on their transparency versus sheet resistance characteristics. Although graphene has advanced recently, TCOs are still superior in performance and can only be surpassed by the combination of transparent materials with a metal grid. Results on modeling and design optimization using a monolithically integrated CIGS cell configuration as case showed that considerable efficiency enhancement (up to 17% in power output compared to single TCOs) can be achieved for metal grid/TCO combinations. Conductivity improvement has been experimentally verified by four point probe measurements. on both commercial ITO coated PET foil as well as on ZnO coated glass with electrochemically deposited metal grids Sheet resistances as low as 0,1 Ohm/sq were reached and 80 times and 400 times conductivity improvements were obtained at a transparency loss of only 3% and 6%, respectively. It was also found that electrochemical deposition results in more conductive grids than obtained by Ag-ink screen printing due to higher aspect ratios and bulk-like conductivity of the first. Simultaneously, nanopatterning allows optimal grid width of 20 μm, as determined by modeling.

This is a preview of subscription content, access via your institution.


  1. [1]

    T. Minami, Thin Solid Films. 516, 1314 (2008).

    CAS  Article  Google Scholar 

  2. [2]

    J. van Deelen, H. Rendering, H. het Mannetje, B. Huis in ’t Veld, M. Theelen, Z. Vroon, P. Poodt, A. Hovestad, Proceedings of the 37th IEEE PVSC., 992 (2010) and refs. Therein.

  3. [3]

    P.J. King, U. Khan, M. Lotyom S. De, J.N. Coleman, ACS Nano. 4, 4238 (2010).

    CAS  Article  Google Scholar 

  4. [4]

    S. Bae, H. Kim, Y. Lee, X. Xu, J.S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H.R. Kim, Y.I. Song, Y.J. Kim, K.S. Kim, B. Ozyilmaz, J.H. Ahn, B.H. Hong, S. Iijima, Nature nanotech.. 5, 574 (2010).

    CAS  Article  Google Scholar 

  5. [5]

    B. Dan, G.C. Irvin, M. Pasquali, ACS Nano., 3, 835 (2009).

    CAS  Article  Google Scholar 

  6. [6]

    A.R. Rathmell, S. Bergin, Y Hua, Z. Li B. Wiley, Adv. Mater.. 22, 3558 (2010) and refs. therein.

    CAS  Article  Google Scholar 

  7. [7]

    M G. Kang, L.J. Guo, Adv. Mater.. 19, 1391 (2007).

    CAS  Article  Google Scholar 

  8. [8]

    W. Kubo, S. Fujikawa, J. Mater. Chem.. 19, 2154 (2009).

    CAS  Article  Google Scholar 

  9. [9]

    A.R. Madaria, A. Kumar, F. N. Ishikawa, C. Zhou, Nano Res.. 3, 564 (2010).

    CAS  Article  Google Scholar 

  10. [10]

    L. Hu, H.S. Kim, J.Y. Lee, P. Peumans, Y. Cui, ACS Nano. 4, 2955 (2010).

    CAS  Article  Google Scholar 

  11. [11]

    J.Y. Lee, S.T. Connor, Y. Cui, P. Peumans, Nano lett.. 8, 689 (2008).

    CAS  Article  Google Scholar 

  12. [12]

    D. S. Ghosh, R. Betancur, T.L Chen, V. Pruneri, J. Martorell, Solar Energy mater. Solar cells. 95, 1228 (2011).

    CAS  Article  Google Scholar 

  13. [13]

    Y.S. Rim, S.M. Kim, K.H. Kim . Jap. J. Appl. Phys.. 47, 5022 (2008).

    CAS  Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Joop van Deelen.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

van Deelen, J., Rendering, H. & Hovestad, A. Recent progress in transparent conducting materials by use of metallic grids on metaloxides. MRS Online Proceedings Library 1323, 209 (2011).

Download citation