Thermoelectric Properties of Er-doped InGaN Alloys for High Temperature Applications


Thermoelectric (TE) properties of erbium-silicon co-doped InxGa1-xN alloys (InxGa1-xN: Er + Si, 0≤x≤0.14), grown by metal organic chemical vapor deposition, have been investigated. It was found that doping of InGaN alloys with Er atoms of concentration, N[Er] larger than 5x1019 cm-3, has substantially reduced the thermal conductivity, κ, in low In content InGaN alloys. It was observed that κ decreases as N[Er] increases in Si co-doped In0.10Ga0.90N alloys. A room temperature ZT value of ~0.05 was obtained in In0.14Ga0.86N: Er + Si, which is much higher than that obtained in un-doped InGaN with similar In content. Since low In content InGaN is stable at high temperatures, these Er+Si co-doped InGaN alloys could be promising TE materials for high temperature applications.

This is a preview of subscription content, access via your institution.


  1. 1.

    T. M. Tritt Science 283, 804 (1999).

    CAS  Article  Google Scholar 

  2. 2.

    A. Boukai, K. Xu, and J. R. Heath, Adv. Mater. 18, 864 (2006).

    CAS  Article  Google Scholar 

  3. 3.

    B. Poudel, Q. Hao, Y. Ma, Y. Lan, A. Minnich, B. Yu, X. Yan, D. Wang, A. Muto, D. Vashaee, X. Chen, J. Liu, M. Dressehaus, G. Chen, and Z. Ren, Science 320, 634 (2008).

    CAS  Article  Google Scholar 

  4. 4.

    M. Ohtaki, K. Araki, and K. Yamamoto, J. Electron. Mater. 38, 1234 (2009).

    CAS  Article  Google Scholar 

  5. 5.

    L. SM, D. Li, C. Yu, W. Jang, D. Kim, Z. Yao, P. Kim, and A. Majumdar, J. Heat Transfer 125, 881 (2003).

    Article  Google Scholar 

  6. 6.

    Q. He, Q. Hao, G. Chen, B. Poudel, X. Wang, D. Wang, and Z. Ren, Appl. Phys. Lett. 91, 052505 (2007).

    Article  Google Scholar 

  7. 7.

    A. Charoenphakdee, K. Kurosaki, A. Harnwunggmoung, H. Muta, and S. Yamanaka, J. Alloys Compound 496, 53 (2010).

    CAS  Article  Google Scholar 

  8. 8.

    D. M. Rowe and V. S. Shukla, J. Appl. Phys. 52, 7421 (1981).

    CAS  Article  Google Scholar 

  9. 9.

    X. W. Wang, H. Lee, Y.C. Lan, G.H. Zhu, G. Joshi, D. Z. Wang, J. Yang, A. J. Muto, M. Y. Tang, J. Klatsky, S. Song, M. S. Dresselhaus, G. Chen, and Z. F. Ren, Appl. Phys. Lett. 93, 193121 (2008).

    Article  Google Scholar 

  10. 10.

    I. M. Kokanbaev, J. Eng. Physics and Thermophysics 76, 432 (2003).

    CAS  Article  Google Scholar 

  11. 11.

    J. W. Roh, S. Y. Jang, J. Kang, S. Lee, J. Noh, W. Kim, J. Park, and W. Lee, Appl. Phys. Lett. 96, 103101 (2010).

    Article  Google Scholar 

  12. 12.

    A. Harnwunggmoung, K. Kurosaki, H. Muta, and S. Yamanaka, Appl. Phys. Lett. 96, 202107 (2010).

    Article  Google Scholar 

  13. 13.

    M. Ohtaki, T. Tsubota, K. Eguchi, and H. Arai, J. Appl. Phys. 79, 1816 (1996).

    CAS  Article  Google Scholar 

  14. 14.

    C. B. Satterthwaite and R. W. Ure, Phy. Rev. 108, 1164 (1957).

    CAS  Article  Google Scholar 

  15. 15.

    R. Venkataubramanian, E. Siivoa, T. Colpitis, and B. O’Quinn, Nature 413, 597 (2001).

    Article  Google Scholar 

  16. 16.

    L. M. Goncalves, C. Couto, P. Alpuim, A. G. Rolo, F. Volklein, and J. H. Correia, Thin Solid Flims 518, 2816 (2010).

    CAS  Article  Google Scholar 

  17. 17.

    S. Yamguchi, R. Izaki, K. Yamagiwa, K. Taki, Y. Iwamura, and A. Yamamoto, Appl. Phys. Lett. 83, 5398 (2003).

    Article  Google Scholar 

  18. 18.

    S. Yamagchi, Y. Iwamura, and A. Yamamoto, Appl. Phys. Lett. 82, 2065 (2003).

    Article  Google Scholar 

  19. 19.

    A. J. Minnich, M. S. Dresselhaus, Z. F. Ren, and G. Chen, Energy Environ. Sci. 2, 466 (2009).

    CAS  Article  Google Scholar 

  20. 20.

    J. Bahk, Z. Bian, M. Zebarjadi, J. M. O. Zide, H. Lu, D. Xu, J. Feser, G. Zeng, A. Majumdar, A. C. Gossard, A. Shakoun, and J. E. Bowers, Phys. Rev. B 81, 235209 (2010).

    Article  Google Scholar 

  21. 21.

    A. Sztein, H. Ohta, J. Sonoda, A. Ramu, J. Bowers, S. DenBaars, and S. Nakamura, Appl. Phys. Express 2, 111003 (2009).

    Article  Google Scholar 

  22. 22.

    B. N. Pantha, R. Dahal, J. Li, J. Y. Lin, H. X. Jiang, and G. Pomrenke, Appl. Phys. Lett. 92, 042112 (2008).

    Article  Google Scholar 

  23. 23.

    B. N. Pantha, R. Dahal, J. Li, J. Y. Lin, H. X. Jiang, and G. Pomrenke, J. Electron. Mater. 38, 1132 (2009).

    CAS  Article  Google Scholar 

  24. 24.

    G. D. Mahan, “Rare Earth Thermoelectncs,” Proceedings of the 16th International Conference on Thermoelectncs, Dresden, Germany, 1997, pp. 21–24.

  25. 25.

    W. Kim, J. Zide, A. Gossard, D. Klenov, S. Stemmer, A. Shakoun, and A. Majumdar, Phys. Rev. Lett. 96, 045901 (2006).

    Article  Google Scholar 

  26. 26.

    D. G. Cahill, Rev. Sci. Instrum. 61, 802 (1990).

    CAS  Article  Google Scholar 

  27. 27.

    D. G. Cahill, M. Katiyar, and J. R. Ablson, Phys. Rev. B 50, 6077 (1994).

    CAS  Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to K. Aryal.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Aryal, K., Feng, I.W., Pantha, B.N. et al. Thermoelectric Properties of Er-doped InGaN Alloys for High Temperature Applications. MRS Online Proceedings Library 1325, 708 (2011).

Download citation