Abstract
Thermoelectric (TE) properties of erbium-silicon co-doped InxGa1-xN alloys (InxGa1-xN: Er + Si, 0≤x≤0.14), grown by metal organic chemical vapor deposition, have been investigated. It was found that doping of InGaN alloys with Er atoms of concentration, N[Er] larger than 5x1019 cm-3, has substantially reduced the thermal conductivity, κ, in low In content InGaN alloys. It was observed that κ decreases as N[Er] increases in Si co-doped In0.10Ga0.90N alloys. A room temperature ZT value of ~0.05 was obtained in In0.14Ga0.86N: Er + Si, which is much higher than that obtained in un-doped InGaN with similar In content. Since low In content InGaN is stable at high temperatures, these Er+Si co-doped InGaN alloys could be promising TE materials for high temperature applications.
This is a preview of subscription content, access via your institution.
References
- 1.
T. M. Tritt Science 283, 804 (1999).
- 2.
A. Boukai, K. Xu, and J. R. Heath, Adv. Mater. 18, 864 (2006).
- 3.
B. Poudel, Q. Hao, Y. Ma, Y. Lan, A. Minnich, B. Yu, X. Yan, D. Wang, A. Muto, D. Vashaee, X. Chen, J. Liu, M. Dressehaus, G. Chen, and Z. Ren, Science 320, 634 (2008).
- 4.
M. Ohtaki, K. Araki, and K. Yamamoto, J. Electron. Mater. 38, 1234 (2009).
- 5.
L. SM, D. Li, C. Yu, W. Jang, D. Kim, Z. Yao, P. Kim, and A. Majumdar, J. Heat Transfer 125, 881 (2003).
- 6.
Q. He, Q. Hao, G. Chen, B. Poudel, X. Wang, D. Wang, and Z. Ren, Appl. Phys. Lett. 91, 052505 (2007).
- 7.
A. Charoenphakdee, K. Kurosaki, A. Harnwunggmoung, H. Muta, and S. Yamanaka, J. Alloys Compound 496, 53 (2010).
- 8.
D. M. Rowe and V. S. Shukla, J. Appl. Phys. 52, 7421 (1981).
- 9.
X. W. Wang, H. Lee, Y.C. Lan, G.H. Zhu, G. Joshi, D. Z. Wang, J. Yang, A. J. Muto, M. Y. Tang, J. Klatsky, S. Song, M. S. Dresselhaus, G. Chen, and Z. F. Ren, Appl. Phys. Lett. 93, 193121 (2008).
- 10.
I. M. Kokanbaev, J. Eng. Physics and Thermophysics 76, 432 (2003).
- 11.
J. W. Roh, S. Y. Jang, J. Kang, S. Lee, J. Noh, W. Kim, J. Park, and W. Lee, Appl. Phys. Lett. 96, 103101 (2010).
- 12.
A. Harnwunggmoung, K. Kurosaki, H. Muta, and S. Yamanaka, Appl. Phys. Lett. 96, 202107 (2010).
- 13.
M. Ohtaki, T. Tsubota, K. Eguchi, and H. Arai, J. Appl. Phys. 79, 1816 (1996).
- 14.
C. B. Satterthwaite and R. W. Ure, Phy. Rev. 108, 1164 (1957).
- 15.
R. Venkataubramanian, E. Siivoa, T. Colpitis, and B. O’Quinn, Nature 413, 597 (2001).
- 16.
L. M. Goncalves, C. Couto, P. Alpuim, A. G. Rolo, F. Volklein, and J. H. Correia, Thin Solid Flims 518, 2816 (2010).
- 17.
S. Yamguchi, R. Izaki, K. Yamagiwa, K. Taki, Y. Iwamura, and A. Yamamoto, Appl. Phys. Lett. 83, 5398 (2003).
- 18.
S. Yamagchi, Y. Iwamura, and A. Yamamoto, Appl. Phys. Lett. 82, 2065 (2003).
- 19.
A. J. Minnich, M. S. Dresselhaus, Z. F. Ren, and G. Chen, Energy Environ. Sci. 2, 466 (2009).
- 20.
J. Bahk, Z. Bian, M. Zebarjadi, J. M. O. Zide, H. Lu, D. Xu, J. Feser, G. Zeng, A. Majumdar, A. C. Gossard, A. Shakoun, and J. E. Bowers, Phys. Rev. B 81, 235209 (2010).
- 21.
A. Sztein, H. Ohta, J. Sonoda, A. Ramu, J. Bowers, S. DenBaars, and S. Nakamura, Appl. Phys. Express 2, 111003 (2009).
- 22.
B. N. Pantha, R. Dahal, J. Li, J. Y. Lin, H. X. Jiang, and G. Pomrenke, Appl. Phys. Lett. 92, 042112 (2008).
- 23.
B. N. Pantha, R. Dahal, J. Li, J. Y. Lin, H. X. Jiang, and G. Pomrenke, J. Electron. Mater. 38, 1132 (2009).
- 24.
G. D. Mahan, “Rare Earth Thermoelectncs,” Proceedings of the 16th International Conference on Thermoelectncs, Dresden, Germany, 1997, pp. 21–24.
- 25.
W. Kim, J. Zide, A. Gossard, D. Klenov, S. Stemmer, A. Shakoun, and A. Majumdar, Phys. Rev. Lett. 96, 045901 (2006).
- 26.
D. G. Cahill, Rev. Sci. Instrum. 61, 802 (1990).
- 27.
D. G. Cahill, M. Katiyar, and J. R. Ablson, Phys. Rev. B 50, 6077 (1994).
Author information
Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Aryal, K., Feng, I.W., Pantha, B.N. et al. Thermoelectric Properties of Er-doped InGaN Alloys for High Temperature Applications. MRS Online Proceedings Library 1325, 708 (2011). https://doi.org/10.1557/opl.2011.849
Published: