Skip to main content
Log in

Kesterites and Chalcopyrites: A Comparison of Close Cousins

  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

Chalcopyrite solar cells based on CuInSe2 and associated alloys have demonstrated high efficiencies, with current annual shipments in the hundreds of megawatts (MW) range and increasing. Largely due to concern over possible indium (In) scarcity, a related set of materials, the kesterites, which comprise Cu2ZnSnS4 and associated alloys, has received increasing attention. Similarities and differences between kesterites and chalcopyrites are discussed as drawn from theory, depositions, and materials characterization. In particular, we discuss predictions from density functional theory, results from vacuum co-evaporation, and characterization via x-ray diffraction, scanning electron microscopy, electron beam-induced current, quantum efficiency, secondary ion mass spectroscopy, and luminescence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. S. Wagner, J. L. Shay, and P. Migliorato, Appl. Phys. Lett. 25(8), 434–435 (1974).

    Article  CAS  Google Scholar 

  2. P. Jackson, D. Hariskos, E. Lotter, S. Paetel, R. Wuerz, R. Menner, W. Wischmann, M. Powalla, Prog. Photovoltaics, DOI: 10.1002 (2011).

  3. I. Repins, M.A. Contreras, B. Egaas, C. DeHart, J. Scharf, C.L. Perkins, B. To, and R. Noufi, Prog. Photovoltaics 16, 235–239 (2008).

    Article  CAS  Google Scholar 

  4. V. Fthenakis, Renew. Sust. Energ. Rev. 13, 2746–2750 (2009).

    Article  CAS  Google Scholar 

  5. T. Sullivan, W.H. Kuo, P. Karayan, M. LoCascio, M. Holman, S. Udupa, B. Hilman, A. Stuk, “Solar State of the Market Q3 2008: The Rocky Road to $100 Billion,” LRSI-SMR-08-02, (Lux Research, 2008).

  6. A. Feltrin, A. Freundlich, Renew. Energ. 33, 180–185 (2008).

    Article  CAS  Google Scholar 

  7. B.A. Andersson, Prog. Photovoltaics 8, 61–76 (2000).

    Article  CAS  Google Scholar 

  8. T. K. Todorov, K. B. Reuter, D. B. Mitzi, Adv. Mater. 22, 1–4 (2010).

    Article  Google Scholar 

  9. G. Kresse, J. Furthmuller, Comp. Mater. Sci. 6(1), 15–50 (1996).

  10. S. Chen, X.G. Gong, A. Walsh, S.H. Wei, Appl. Phys. Lett. 94, 041903 (2009).

    Article  Google Scholar 

  11. S. Chen, J.H. Yang, X.G. Gong, A. Walsh, S.H. Wei, Phys. Rev. B 81, 245204 (2010).

    Article  Google Scholar 

  12. S.H. Wei, A. Zunger, J. Appl. Phys. (6), 3846–3856 (1995).

  13. N. Romeo, Jpn. J. Appl. Phys. 19–3, 5–13, (1980).

  14. D.S. Su, S.H. Wei, Appl. Phys. Lett. 74(17), 2483–2485 (1999).

  15. S. B. Zhang, S.H. Wei, A. Zunger, H. K. Yoshida, Phys. Rev. B 57(16), 9642–9656 (1998).

  16. S. Chen, X.G. Gong, A. Walsh, S.H. Wei, Appl. Phys. Lett. 96, 021902 (2010).

    Article  Google Scholar 

  17. S.H. Wei, B. Zhang, J. Phys. Chem. Solids 66, 1994 (2005).

    Article  CAS  Google Scholar 

  18. S. Chen, A. Walsh, J.-H. Yang, X.-G. Gong, L. Sun, P.-X. Yang, J.-H. Chu, and S.-H. Wei, Phys. Rev. B 83, 125201 (2011).

    Article  Google Scholar 

  19. A.M. Gabor, “The conversion of (In,Ga)2Se3 thin films to Cu(In,Ga)Se2 for application to photovoltaic solar cells,” PhD thesis, (University of Colorado, 1995), pp. 42–49.

  20. A. Weber, R. Mainz, H.W. Schock, J. Appl. Phys. 107, 013516 (2010).

    Article  Google Scholar 

  21. J. Kessler, J. Scholdstrom, L. Stolt, IEEE Phot. Spec. Conf. 28, 509–512(2000).

  22. N. Vora et al, in progress.

  23. W.N. Shafarman, J. Zhu, Mater. Res. Soc. Symp. P. 668, H2.3.2-H2.3.6 (2001).

    Article  Google Scholar 

  24. A.M. Gabor, J.R. Tuttle, D.S. Albin, M.A. Contreras, R. Noufi, Appl. Phys. Lett. 65 2, 198–200 (1994).

    Article  CAS  Google Scholar 

  25. R.A. Mickelsen, W.S. Chen, Y.R. Hsiao, V.E. Lowe, IEEE Transactions on Electron Devices ED-31 (5), 542–546 (1984).

  26. J.R. Tuttle, M.A. Contreras, M.H. Bode, D. Niles, D.S. Albin, R. Matson, A.M. Gabor, A. Tennant, A. Duda, R. Noufi, J. Appl. Phys. 77 1, 153–161 (1995).

    Article  CAS  Google Scholar 

  27. B.A. Schubert, B. Marsen, S. Cinque, T. Unold, R. Klenk, S. Schorr, H.W. Schock, Prog. Photovoltaics 19 1, 93–96 (2011).

    Article  CAS  Google Scholar 

  28. T. Tanaka, A. Yoshida, D. Saiki, K. Saito, Q. Guo, M. Nishio, T. Yamaguchi, Thin Solid Films 518, S29-S33 (2010).

    Article  Google Scholar 

  29. S.H. Han, F.S. Hasoon, A.M. Hermann, D.H. Levi, Appl. Phys. Lett. 91, 021904 (2007).

    Article  Google Scholar 

  30. J.E. Granata, J.R. Sites, World Conf. Photo. Sol. Energ. Conv. 2, 604–607 (1998).

    Google Scholar 

  31. D. Rudmann, “Effects of sodium on growth and properties of Cu(In,Ga)Se2 thin films and solar cells,” PhD thesis, (Swiss Federal Institute of Technology, 2004).

  32. M.B. Zellner, R.W. Birkmire, E. Eser, W.N. Shafarman, J.G. Chen, Prog. Photovoltaics 11, 543–548 (2003).

    Article  CAS  Google Scholar 

  33. M.J. Romero, M.A. Contreras, I. Repins, C.S. Jiang, M.M Al-Jassim, Mater. Res. Soc. Symp. P. 1165, 419–424 (2010).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Repins, I., Vora, N., Beall, C. et al. Kesterites and Chalcopyrites: A Comparison of Close Cousins. MRS Online Proceedings Library 1324, 1701 (2011). https://doi.org/10.1557/opl.2011.844

Download citation

  • Published:

  • DOI: https://doi.org/10.1557/opl.2011.844

Navigation