Comparison of Aluminum Nitride Nanowire Growth with and without Catalysts via Chemical Vapor Deposition


This paper presents a systematic investigation of AlN nanowire synthesis by chemical vapor deposition using Al and NH3 on SiO2/Si substrate and direct nitridation of mixture of Al-Al2O3 by NH3. A wide variety of catalyst materials, in both discrete nanoparticle and thin film forms, have been used (Co, Au, Ni, and Fe). The growth runs have been carried out at temperatures between 800 and 1100oC mainly under H2 as carrier gas. It was found that the most efficient catalyst in terms of nanowire formation yield was 20-nm Ni film. The AlN nanowire diameters are about 20–30 nm, about the same thickness as the Ni-film. Further studies of direct nitridation of mixture of Al-Al2O3 by NH3 have resulted in high density one-dimensional nanostructure networks at 1100oC. It was observed that catalyst-free nanostructures resulted from the direct nitridation were significantly longer than that with catalysts. The analysis of the grown nanowires has been carried out by scanning electron microscopy, transmission electron microscopy, atomic force microscopy, and x-ray diffraction.

This is a preview of subscription content, access via your institution.


  1. 1.

    S. Nakamura, Science 281, 956 (1998).

    CAS  Article  Google Scholar 

  2. 2.

    S.G. Yang, S. Pakhomov, T. Hung, and C.Y. Wong, Appl. Phys. Lett. 81, 2418 (2003).

    Article  Google Scholar 

  3. 3.

    S. Y. Wu, H.X. Liu, L. Gu, R.K. Singh, L. Budd, M. Van Schifgaarde, M.R. McCartney, D.J. Smith, and N. Newman, Appl. Phys. Lett. 82, 3047 (2003).

    CAS  Article  Google Scholar 

  4. 4.

    V. Cimalla, Ch. Foerster, D. Cengher, K. Tonisch, and O. Ambacher, Phys. Stat. Sol (b) 243, 1476 (2006).

    CAS  Article  Google Scholar 

  5. 5.

    V.N. Tondare, C. Ballasubramanian, S.V. Shende, D.S. Joag, V.P. Godbole, S.V. Bhoraskar, and M. Bhadbhade, Appl. Phys. Lett. 80, 4813 (2002).

    CAS  Article  Google Scholar 

  6. 6.

    J.A. Haber, O.C. Gibbons, and W.E. Buhro, Chem. Mater. 10, 4062 (1998).

    CAS  Article  Google Scholar 

  7. 7.

    Y.J. Zhang, J. Liu, R.R. He, Q. Zhang, X.Z. Zhang, and J. Zhu, Chem. Mater. 13, 3899 (2001).

    CAS  Article  Google Scholar 

  8. 8.

    T. Suehiro, J. Tatami, T. Meguro, K. Komeya, and S. Matsuo, J. Am. Ceram. Soc. 75, 910 (2002).

    Google Scholar 

  9. 9.

    H.M. Wu, J.Y. Liang, K.L. Lin, and C.C. Chou, Ferroelectrics 383, 73 (2009).

    CAS  Article  Google Scholar 

  10. 10.

    Q. Wu, Z. Hu, X.Z. Wang, Y. Chen, and Y. N. Lu, J. Phys. Chem. B 107, 9726 (2003).

    CAS  Article  Google Scholar 

  11. 11.

    Y.B. Tang, H.T. Cong, Z.M. Wang, and H.M. Cheng, Chem. Phys. Lett. 416, 171 (2005).

    CAS  Article  Google Scholar 

  12. 12.

    C. Liu, Z. Hu, Q. Wu, X.Z. Wang, Y. Chen, H. Sang, J.M. Zhu, S.Z. Deng, and N.S. Xu, J. Am. Ceram. Soc. 127, 1318 (2005).

    CAS  Article  Google Scholar 

  13. 13.

    Q. Zhao, H.Z. Zhang, X.Y. Xu, Z. Wang, J. Xu, D.P. Yu, G.H. Li, and F.H. Su, Appl. Phys. Lett. 86, 193101 (2005).

    Article  Google Scholar 

  14. 14.

    S.C. Shi, C.F. Chen, S. Chattopadhyay, Z.H. Lan, K.H. Chen, and L.C. Chen, Adv. Funct. Mater. 15, 781 (2005).

    CAS  Article  Google Scholar 

  15. 15.

    F. Liu, Z.J. Su, F.Y. Mo, L. Li, Z.S. Chen, Q.R. Liu, J. Chen, S.Z. Deng, and N.S. Xu, Nanoscale 3, 610 (2011).

    CAS  Article  Google Scholar 

  16. 16.

    X. Wang, J. Song, F. Zhang, C. He, Z. Hu, and Z. Wang, Adv. Mater. 22, 1 (2010).

    Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Kasif Teker.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Teker, K., Oxenham, J.A. Comparison of Aluminum Nitride Nanowire Growth with and without Catalysts via Chemical Vapor Deposition. MRS Online Proceedings Library 1324, 802 (2011).

Download citation