Deposition of Zinc Oxide Thin Films Using a Surface Reaction on Platinum Nanoparticles

Abstract

A new chemical vapor deposition method for the growth of ZnO films using the reaction between dimethylzinc (DMZn) and thermally excited H2O produced by a Pt-catalyzed H2–O2 reaction was investigated. The thermally excited H2O molecules formed by the exothermic reaction of H2 and O2 on the catalyst were ejected from a fine nozzle into the reaction zone and allowed to collide with DMZn ejected from another fine nozzle. The ZnO films were grown directly on a-plane (11-20) sapphire substrates at substrate temperatures of 773-873 K with no buffer layer. X-ray diffraction patterns exhibited intense (0002) and (0004) peaks from the ZnO(0001) index plane. The smallest full width at half maximum (FWHM) value of the ω- rocking curve of ZnO(0002) was less than 0.1º. The largest Hall mobility and the smallest residual carrier concentration of the ZnO films were 169 cm2V−1s−1 and 1.7×1017 cm−3, respectively. Photoluminescence (PL) spectra at room temperature exhibited a band edge emission at 3.29 eV, with a FWHM of 104 meV. Green luminescence from deeper levels was generally about 1.5% of the band edge emission intensity. PL spectra at 5 K showed a strong emission peak at 3.3603 eV, attributed to the neutral donor-bound exciton Dºx. The FWHM was as low as 1.0 meV. Free exciton emissions also appeared at 3.3757 eV (FXA, n=1) and 3.4221 eV (FXA, n=2).

This is a preview of subscription content, access via your institution.

References

  1. 1.

    F. S. Hickernell, Proc. IEEE, 64, 631 (1976).

    CAS  Article  Google Scholar 

  2. 2.

    S. Pizzini, N. Butta, D. Narducci, and M. Palladino, J. Electrochem. Soc., 136, 1945 (1989).

    CAS  Article  Google Scholar 

  3. 3.

    I. S. Jeong, J. H. Kim, and S. Im, Appl. Phys. Lett., 83, 2946 (2003).

    CAS  Article  Google Scholar 

  4. 4.

    T. Minami, Semicond. Sci. Technol., 20, S35 (2005).

    CAS  Article  Google Scholar 

  5. 5.

    B. K. Meyer, H. Alves, D. M. Hofmann, W. Kriegseis, D. Forster, F. Bertram, J. Christein, A. Hoffmann, M. Straßburg, M. Dworzak, U. Haboeck, and A. V. Rodina, phys. stat. sol. (b), 241, 231 (2004).

    CAS  Article  Google Scholar 

  6. 6.

    A. Tsukazaki, A. Ohtomo, T. Onuma, M. Ohtani, T. Makino, M. Sumiya, K. Ohtani, S. Chichibu, S. Fuke, Y. Segawa, H. Ohno, H. Koinuma, and M. Kawasaki, Nature Materials, 4, 42 (2005).

    CAS  Article  Google Scholar 

  7. 7.

    E. M. Kaidashev, M. Lorenz, H. von Wenckstern, A. Rahm, H. C. Semmelhack, K.-H. Han, G. Benndorf, C. Bundesmann, H. Hochmuth, and M. Grundmann, Appl. Phys. Lett., 82, 3901 (2003).

    CAS  Article  Google Scholar 

  8. 8.

    P. Fons, K. Iwata, S. Niki, A. Yamada, and K. Matsubara, J. Cryst. Growth, 201-202, 627 (1999).

    Article  Google Scholar 

  9. 9.

    K. Miyamoto, M. Sano, H. Kato, and T. Yao, J. Cryst. Growth, 265, 34 (2004).

    CAS  Article  Google Scholar 

  10. 10.

    A. Ohtomo and A. Tsukazaki, Semicond. Sci. Technol., 20, S1 (2005).

    CAS  Article  Google Scholar 

  11. 11.

    C. K. Lau, S. K. Tiku, and K. M. Lakin, J. Electrochem. Soc., 127, 1843 (1980).

    CAS  Article  Google Scholar 

  12. 12.

    J. Dai, F. Jiang, Y. Pu, L. Wang, W. Fang, and F. Li, Appl. Phys. A, 89, 645 (2007).

    CAS  Article  Google Scholar 

  13. 13.

    S. F. Chichibu, T. Onuma, M. Kubota, and A. Uedome, J. Appl. Phys., 99, 093505 (2006).

    Article  Google Scholar 

  14. 14.

    K. Ogata, T. Kawanishi, K. Maejima, S. Sakurai, Sz. Fujita, and Sg. Fujita, J. Cryst. Growth, 237-239, 553 (2002).

    Article  Google Scholar 

  15. 15.

    Y. Chen, D. M. Bagnall, Z. Zhu, T. Sekiuchi, K. Park, K. Hiraga, T. Yao, S. Koyama, M. Y. Shen, and T. Goto, J. Cryst. Growth, 181, 165 (1997).

    CAS  Article  Google Scholar 

  16. 16.

    A. Tsukazaki, A. Ohtomo, M. Kawasaki, T. Makino, C. H. Chia, T. Segawa, and H. Koinuma, Appl. Phys. Lett., 84, 3858 (2004).

    CAS  Article  Google Scholar 

  17. 17.

    A. Ohtomo, H. Kimura, K. Saito, T. Makino, Y. Segawa, H. Koinuma, and M. Kawasaki, J. Cryst. Growth, 214/215, 284 (2000).

    Article  Google Scholar 

  18. 18.

    H. Tampo, A. Yamada, P. Fons, H. Shibata, K. Matsubara, K. Iwata, S. Niki, K. Nakahara, and H. Takasu, Appl. Phys. Lett., 84, 4412 (2004).

    CAS  Article  Google Scholar 

  19. 19.

    S. Heinze, A. Dadgar, F. Bertram, A. Krtschil, J. Bläsing, H. Witte, S. Tiefenau, T. Hempel, A. Diez, J. Christen, and A. Krost, Proc. SPIE, 6474, 647406–1 (2007).

    Article  Google Scholar 

  20. 20.

    J. Dai, H. Su, L. Wang, Y. Pu, W. Fang, and F. Jiang, J. Cryst. Growth, 290, 426 (2006).

    CAS  Article  Google Scholar 

  21. 21.

    M. Sano, K. Miyamoto, H. Kato, and T. Yao, Jpn. J. Appl. Phys., 42, L1050 (2003).

    CAS  Article  Google Scholar 

  22. 22.

    K. Miyamoto, M. Sano, H. Kato, and T. Yao, Jpn. J. Appl. Phys., 41, L1203 (2002).

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Kanji Yasui.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Yasui, K., Miura, H. & Nishiyama, H. Deposition of Zinc Oxide Thin Films Using a Surface Reaction on Platinum Nanoparticles. MRS Online Proceedings Library 1315, 210 (2011). https://doi.org/10.1557/opl.2011.719

Download citation