Optoelectronic characterization of morphology-controlled zinc oxide nanowires


In this paper, we report the characterization of vertically aligned ZnO nanowire (NW) arrays synthesized by metal-catalyzed chemical vapor deposition. The growth mechanism of ZnO NWs may be related to vapor-solid-nucleation. Morphological, structural, optical and field emission characteristics can be modified by varying the growth time. For growth time reaches 120 min, the length and the diameter of ZnO NWs are 1.5 μm and 350 nm, and they also show preferential growth orientation along the c-axis. Moreover, strong alignment and uniform distribution of ZnO NWs can effectively enhance the antireflection to reach the average reflectance of 5.7% in the visible region as well. Field emission measurement indicated that the growth time play an important role in density- and morphology-controlled ZnO NWs, and thus ZnO NWs are expected to be used in versatile optoelectronic devices.

This is a preview of subscription content, access via your institution.


  1. 1.

    C. Y. Jiang, X. W. Sun, G. Q. Lo, and D. L. Kwong, J. X. Wang, Appl. Phys. Lett., 90, 263501 (2007).

    Article  Google Scholar 

  2. 2.

    L. Xu, H. Shen, X. Li, and R. Zhu, Chin. Opt. Lett., 7, 953–955 (2009).

    CAS  Article  Google Scholar 

  3. 3.

    M. P. Manoharan, A. V. Desai, G. Neely, and M. A. Haque, Journal of Nanomaterials, 2008, 849745 (2008).

    Article  Google Scholar 

  4. 4.

    D. Weissenberger, D. Gerthsen, A. Reiser, G. M. Prinz, M. Feneberg, K. Thonke, H. Zhou, J. Sartor, J. Fallert, C. Klingshirn, and H. Kalt, Appl. Phys. Lett., 94, 042107 (2009).

    Article  Google Scholar 

  5. 5.

    X. D. Wang, J. H. Song, J. Liu, Z. L. Wang, Science, 316,102 (2007).

    CAS  Article  Google Scholar 

  6. 6.

    J. J. Wu and S. C. Liu, Adv. Mater., 14, 215 (2002).

    CAS  Article  Google Scholar 

  7. 7.

    W. I. Park, D. H. Kim, S. W. Jung, G. C. Yi, Appl. Phys. Lett., 80, 4232 (2002).

    CAS  Article  Google Scholar 

  8. 8.

    A. B. Hartanto, X. Ning, Y. Nakata, T. Okada, Appl. Phys. A, 78, 299 (2004).

    CAS  Article  Google Scholar 

  9. 9.

    L. Vayssieres, K. Keis, S. E. Lindquist, A. Hagfeldt, J. Phys. Chem. B, 105, 3350 (2001).

    CAS  Article  Google Scholar 

  10. 10.

    Z. Zhang, S. J. Wang, T. Yu and T. Wu, J. Phys. Chem. C, 111, 17500–17505 (2007).

    CAS  Article  Google Scholar 

  11. 11.

    C. Lee, S. Y. Bae, S. Mobasser, H. Manohara, Nano Lett., 5, 2438–2442 (2005).

    CAS  Article  Google Scholar 

  12. 12.

    X. D. Bai, E. G. Wang, P. X. Gao, Z. L. Wang, Nano Lett., 3, 1147 (2003).

    CAS  Article  Google Scholar 

  13. 13.

    X. D. Bai, E. G. Wang, P. X. Gao, Z. L. Wang, Nano Lett., 3, 1147 (2003).

    CAS  Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Shou-Yi Kuo.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kuo, SY., Lai, FI., Wang, CC. et al. Optoelectronic characterization of morphology-controlled zinc oxide nanowires. MRS Online Proceedings Library 1315, 605 (2011). https://doi.org/10.1557/opl.2011.713

Download citation