Anti-Tumor Chloroquine-Gold Nanocomposites and their Binding Interaction with Bovine Serum Albumin: Biophysical and Biochemical Aspects of Protein Binding


We have conjugated chloroquine onto nano-sized, thiol-stabilized gold nanoparticles by using 1-ethyl-3-[3-dimethylaminopropyl] carbodiimide hydrochloride (EDC) / N-hydroxysulfosuccinimide (NHS) chemistry. The formation of gold nanoparticles was confirmed using optical spectra for characteristic surface plasmon band; the average size of gold nanoparticles was found to be 5-7 nm from electron microscopy measurements. The anti-tumor activity of prepared nanocomposite, vis-à-vis chloroquine itself, had been demonstrated using MCF-7 breast cancer cell line. To determine the binding affinity of gold-chloroquine nanocomposites to transport proteins present in blood serum, we studied the binding interaction of gold-chloroquine to bovine serum albumin (BSA), the most abundant plasma protein. The binding was studied by using isothermal titration calorimetry and fluorescence spectroscopy and was analyzed in terms of binding constant, entropy and enthalpy change. The gold-chloroquine nanocomposites were found to interact efficiently with BSA and fluorescence quenching experiments involving Trp212 suggests that the nanocomposites bind at site I of BSA.

This is a preview of subscription content, access via your institution.


  1. 1.

    J. Gao, H. Gu and B. Xu, Acc. Chem. Res. 42, 1097–1107 (2009).

    CAS  Article  Google Scholar 

  2. 2.

    V. Dixit, J. Van den Bossche, D.M. Sherman, D.H. Thompson and R.P. Andres, Bioconjugate Chem. 17, 603–609 (2006).

    CAS  Article  Google Scholar 

  3. 3.

    C.C. You, A. Verma and V.M. Rotello, Soft Matter 2, 190–204 (2006).

    CAS  Article  Google Scholar 

  4. 4.

    J.A. Martinson, C.J. Montoya, X. Usuga, R. Ronquillo, A.L. Landay and S.N. Desai, Antimicrob. Agents Ch. 54, 871(2010).

    CAS  Article  Google Scholar 

  5. 5.

    M. Navarro, C. Hernandez, F. Vasquez, H. Goitia, L.E. Ojeda, M. Velasquez and G. Fraile, Transition Met. Chem. 33, 893–898 (2008).

    CAS  Article  Google Scholar 

  6. 6.

    A.R. Martirosyan, R. Rahim-Bata, A.B. Freeman, C.D. Clarke, R.L. Howard and J.S. Strobl, Biochem. Pharmacol. 68, 1729–1738 (2004).

    CAS  Article  Google Scholar 

  7. 7.

    K.H. Maclean, F.C. Dorsey, J.L. Cleveland and M.B. Kastan, J. Clin. Invest. 118, 79–88 (2008).

    CAS  Article  Google Scholar 

  8. 8.

    V.S. Jisha, K.T. Arun, M. Hariharan and D. Ramaiah, J. Am. Chem. Soc. 128, 6024–6025 (2006).

    CAS  Article  Google Scholar 

  9. 9.

    T. Peters Jr., Adv. Protein Chem. 37, 60065–60065 (1985).

    Google Scholar 

  10. 10.

    X.M. He and D.C. Carter, Nature 358, 209–215 (1992).

    CAS  Article  Google Scholar 

  11. 11.

    J.R. Lakowicz, Principles of Fluorescence Spectroscopy. 3rd ed.: Springer: New York, 2006.

    Google Scholar 

  12. 12.

    W.R. Ware, J. Phys. Chem. 66, 455–458 (1962).

    CAS  Article  Google Scholar 

  13. 13.

    P.D. Ross and S. Subramanian, Biochemistry 20, 3096–3102 (1981).

    CAS  Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Pinak Chakrabarti.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Joshi, P., Chakraborti, S., Jaime, E.RV. et al. Anti-Tumor Chloroquine-Gold Nanocomposites and their Binding Interaction with Bovine Serum Albumin: Biophysical and Biochemical Aspects of Protein Binding. MRS Online Proceedings Library 1316, 929 (2011).

Download citation