Abstract
Direct energy conversion between thermal and electrical energy, based on thermoelectric (TE) effect, has the potential to recover waste heat and convert it to provide clean electric power. The energy conversion efficiency is related to the thermoelectric figure of merit ZT expressed as ZT=S2σT/κ, T is temperature, S is the Seebeck coefficient, σ is conductance and κ is thermal conductivity. For a lower thermal conductivity κ and high power factor (S2σ), our current strategy is the development of rhombohedrally strained single crystalline SiGe materials that are highly [111]-oriented twinned. The development of a SiGe “twin lattice structure (TLS)” plays a key role in phonon scattering. The TLS increases the electrical conductivity and decreases thermal conductivity due to phonon scattering at stacking faults generated from the 60° rotated primary twin structure. To develop high performance materials, the substrate temperature, chamber working pressure, and DC sputtering power are controlled for the aligned growth production of SiGe layer and TLS on a c-plane sapphire. Additionally, a new elevated temperature thermoelectric characterization system, that measures the thermal diffusivity and Seebeck effect nondestructively, was developed. The material properties were characterized at various temperatures and optimized process conditions were experimentally determined. The present paper encompasses the technical discussions toward the development of thermoelectric materials and the measurement techniques.
References
- 1.
G. S. Nolas, J. Sharp, and H. J. Goldsmid, “Thermoelectrics: basic principles and new materials developments” (Springer, Berlin; New York, 2001)
- 2.
D. M. Rowe, “CRC handbook of thermoelectric” (CRC Press, Boca Raton, FL, 1995)
- 3.
T. C. Harman, P. J. Taylor, M. P. Walsh, and B. E. LaGorge, Science 297, 2229 (2002)
- 4.
R. Venkatasubramanian, E. Silvola, T. Colpitts, and B. O’Quinn, Nature 413, 597 (2001)
- 5.
G. Chen, Phys. Rev. B 57, 14958 (1998)
- 6.
S. –M Lee, D. G. Cahill, and R. Venkatasubramanian, Appl. Phys. Lett. 70, 2957 (1997)
- 7.
B. Yang, W. L. Liu, K. L. Wang, and G. Chen, Appl. Phys. Lett. 81, 3588 (2002)
- 8.
Y. Park, Glen C. King, and Sang. H. Choi, J. Cryst. Growth 310, 2724 (2008)
- 9.
M. S. Dresselhaus, G. Chen, M. Y. Tang, R. G. Yang, H. Lee, D. Wang, Z. Ren, J. P. Fleurial, and P. Gogna, Adv. Mater. 19, 1043–1053 (2007)
- 10.
L. D. Hicks and M. S. Dresselhaus, Phys. Rev. B 47, 12727 (1993)
- 11.
K. F. Hsu, S. Loo, F. Guo, W. Chen, J. S. Dyck, C. Uher, T. Hogan, E. K. Polychroniadis, and M. G. Kanatzidis, Science 303, 818–821 (2004)
- 12.
A. I. Hochbaum, R. Chen, R. D. Delgado, W. Liang, E. C. Granett, M. Naharian, A. Majumdar, and P. Yang, Nature 451, 164 (2007)
- 13.
T. M. Tritt, Ed., “Semiconductors and Semimetals,” San Diego (2001)
- 14.
F. C. Nix, and D. MACNAIR, Phys. Rev. 61, 74 (1942)
- 15.
P. Hidnert, and H. S. Krider, J. Res. Nat. Bur. Stand. 48, 3, 209 (1952)
- 16.
D. L. Smith, “Thin-Film Deposition-Principles and Practice,” Academic Press, New York, 1995 (Appendix)
Author information
Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Jung Kim, H., Park, Y., Glen, C.K. et al. Crystal Lattice Controlled SiGe Thermoelectric Materials with High Figure of Merit. MRS Online Proceedings Library 1314, 517 (2011). https://doi.org/10.1557/opl.2011.512
Published: