Crystal Lattice Controlled SiGe Thermoelectric Materials with High Figure of Merit

Abstract

Direct energy conversion between thermal and electrical energy, based on thermoelectric (TE) effect, has the potential to recover waste heat and convert it to provide clean electric power. The energy conversion efficiency is related to the thermoelectric figure of merit ZT expressed as ZT=S2σT/κ, T is temperature, S is the Seebeck coefficient, σ is conductance and κ is thermal conductivity. For a lower thermal conductivity κ and high power factor (S2σ), our current strategy is the development of rhombohedrally strained single crystalline SiGe materials that are highly [111]-oriented twinned. The development of a SiGe “twin lattice structure (TLS)” plays a key role in phonon scattering. The TLS increases the electrical conductivity and decreases thermal conductivity due to phonon scattering at stacking faults generated from the 60° rotated primary twin structure. To develop high performance materials, the substrate temperature, chamber working pressure, and DC sputtering power are controlled for the aligned growth production of SiGe layer and TLS on a c-plane sapphire. Additionally, a new elevated temperature thermoelectric characterization system, that measures the thermal diffusivity and Seebeck effect nondestructively, was developed. The material properties were characterized at various temperatures and optimized process conditions were experimentally determined. The present paper encompasses the technical discussions toward the development of thermoelectric materials and the measurement techniques.

References

  1. 1.

    G. S. Nolas, J. Sharp, and H. J. Goldsmid, “Thermoelectrics: basic principles and new materials developments” (Springer, Berlin; New York, 2001)

    Google Scholar 

  2. 2.

    D. M. Rowe, “CRC handbook of thermoelectric” (CRC Press, Boca Raton, FL, 1995)

    Google Scholar 

  3. 3.

    T. C. Harman, P. J. Taylor, M. P. Walsh, and B. E. LaGorge, Science 297, 2229 (2002)

    CAS  Article  Google Scholar 

  4. 4.

    R. Venkatasubramanian, E. Silvola, T. Colpitts, and B. O’Quinn, Nature 413, 597 (2001)

    CAS  Article  Google Scholar 

  5. 5.

    G. Chen, Phys. Rev. B 57, 14958 (1998)

    CAS  Article  Google Scholar 

  6. 6.

    S. –M Lee, D. G. Cahill, and R. Venkatasubramanian, Appl. Phys. Lett. 70, 2957 (1997)

    CAS  Article  Google Scholar 

  7. 7.

    B. Yang, W. L. Liu, K. L. Wang, and G. Chen, Appl. Phys. Lett. 81, 3588 (2002)

    CAS  Article  Google Scholar 

  8. 8.

    Y. Park, Glen C. King, and Sang. H. Choi, J. Cryst. Growth 310, 2724 (2008)

    CAS  Article  Google Scholar 

  9. 9.

    M. S. Dresselhaus, G. Chen, M. Y. Tang, R. G. Yang, H. Lee, D. Wang, Z. Ren, J. P. Fleurial, and P. Gogna, Adv. Mater. 19, 1043–1053 (2007)

    CAS  Article  Google Scholar 

  10. 10.

    L. D. Hicks and M. S. Dresselhaus, Phys. Rev. B 47, 12727 (1993)

    CAS  Article  Google Scholar 

  11. 11.

    K. F. Hsu, S. Loo, F. Guo, W. Chen, J. S. Dyck, C. Uher, T. Hogan, E. K. Polychroniadis, and M. G. Kanatzidis, Science 303, 818–821 (2004)

    CAS  Article  Google Scholar 

  12. 12.

    A. I. Hochbaum, R. Chen, R. D. Delgado, W. Liang, E. C. Granett, M. Naharian, A. Majumdar, and P. Yang, Nature 451, 164 (2007)

    Google Scholar 

  13. 13.

    T. M. Tritt, Ed., “Semiconductors and Semimetals,” San Diego (2001)

    Google Scholar 

  14. 14.

    F. C. Nix, and D. MACNAIR, Phys. Rev. 61, 74 (1942)

    CAS  Article  Google Scholar 

  15. 15.

    P. Hidnert, and H. S. Krider, J. Res. Nat. Bur. Stand. 48, 3, 209 (1952)

    Article  Google Scholar 

  16. 16.

    D. L. Smith, “Thin-Film Deposition-Principles and Practice,” Academic Press, New York, 1995 (Appendix)

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Hyun Jung Kim.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Jung Kim, H., Park, Y., Glen, C.K. et al. Crystal Lattice Controlled SiGe Thermoelectric Materials with High Figure of Merit. MRS Online Proceedings Library 1314, 517 (2011). https://doi.org/10.1557/opl.2011.512

Download citation