Stability of fast elaborated small CdS quantum dots


Small size CdS QDs were synthesized by (i) the single source precursor methodology and by (ii) the microwave synthetic route. The consequences of CdS QD direct exposure to air for a period of 7 days were investigated by following the evolution of the photoluminescence (PL) and absortion spectra. For QDs obtained by (i), the excitonic emission band (3.0 – 3.1 eV) decreases in intensity, relatively to the low energy one (2.2 – 2.5 eV) tentatively associated to midgap surface states. This suggests arising of new recombination path(s) associated to degradations during aging, possibly an oxidative formation of a CdO surface layer. On the other hand, no significant change is observed in the absorption spectra. For QDs obtained by (ii), no degradation is revealed by the PL spectra which remain unchanged. On the other hand, the absorption spectra are dominated by an unexplained broad band around 3.6 eV which tends to hide the fundamental excitonic transition one and increases in intensity with aging.

This is a preview of subscription content, access via your institution.


  1. 1

    S. L. Cumberland, K. M. Hanif, A. Javier, G. A. Khitrov, G. F. Strouse, S. M. Woessner and C. S. Yun, Chem. Mater., 14, 1576 (2002)

    CAS  Article  Google Scholar 

  2. 2

    D. Arl, S. Dalmasso, N. Bozzolo, Y. Zhang, J.-J. Gaumet and J.-P. Laurenti, Mat. Chem. Phys., 124, 129 (2010)

    CAS  Article  Google Scholar 

  3. 3

    M. Fregnaux, D. Arl, S. Dalmasso, J.-J. Gaumet and J.-P. Laurenti, J. Phys. Chem. C, 114, 17318 (2010)

    CAS  Article  Google Scholar 

  4. 4

    A. L. Washington II and G. F. Strouse, J. Am. Chem. Soc., 130, 8916 (2008)

    CAS  Article  Google Scholar 

  5. 5

    Washington, Aaron L. and G. F. Strouse, Chem. Mater., 21, 3586 (2009)

    CAS  Article  Google Scholar 

  6. 6

    M. Fregnaux, S. Dalmasso, J.-J. Gaumet and J.-P. Laurenti., presented at NANOSMAT-5: 5th International Conference on Surfaces, Coatings and Nanostructured Materiels; Journal of Nanoscience and Nanotechnology: Reims,(2010) (submitted)

  7. 7

    G. Kalyuzhny and R. W. Murray, J. Phys. Chem. B, 109, 7012 (2005)

    CAS  Article  Google Scholar 

  8. 8

    I. G. Dance, A. Choy and M. L. Scudder, J. Am. Chem. Soc., 106, 6285 (1984)

    CAS  Article  Google Scholar 

  9. 9

    J. J. Gaumet and G. Strouse, Mater. Sci. Eng., C, 19, 299 (2002)

    Article  Google Scholar 

  10. 10

    J.-J. Gaumet, G. A. Khitrov and G. F. Strouse, Nano Lett., 2, 375 (2002)

    CAS  Article  Google Scholar 

  11. 11

    T. Lover, W. Henderson, G. A. Bowmaker, J. M. Seakins and R. P. Cooney, Inorg. Chem., 36, 3711 (1997)

    CAS  Article  Google Scholar 

  12. 12

    L. Spanhel, M. Haase, H. Weller and A. Henglein, J. Am. Chem. Soc., 109, 5649 (1987)

    CAS  Article  Google Scholar 

  13. 13

    B. Liu, G. Q. Xu, L. M. Gan, C. H. Chew, W. S. Li and Z. X. Shen, J. Appl. Phys., 89, 1059 (2001)

    CAS  Article  Google Scholar 

  14. 14

    N. Pradhan and S. Efrima, J. Am. Chem. Soc., 125, 2050 (2003)

    CAS  Article  Google Scholar 

  15. 15

    J. Chrysochoos, J. Phys. Chem., 96, 2868 (1992)

    CAS  Article  Google Scholar 

  16. 16

    A. A. Vuylsteke and Y. T. Sihvonen, Phys. Rev., 113, 40 LP (1959)

    CAS  Article  Google Scholar 

  17. 17

    H. Cao, G. Wang, S. Zhang, X. Zhang and D. Rabinovich, Inorg. Chem., 45, 5103 (2006)

    CAS  Article  Google Scholar 

  18. 18

    D. V. Talapin, A. L. Rogach, A. Kornowski, M. Haase and H. Weller, Nano Lett., 1, 207 (2001)

    CAS  Article  Google Scholar 

  19. 19

    M. A. Hines and P. Guyot-Sionnest, J. Phys. Chem., 100, 468 (1996)

    CAS  Article  Google Scholar 

Download references

Author information



Rights and permissions

Reprints and Permissions

About this article

Cite this article

Fregnaux, M., Dalmasso, S., Gaumet, JJ. et al. Stability of fast elaborated small CdS quantum dots. MRS Online Proceedings Library 1286, 858 (2010).

Download citation