Performance evaluation of neutron detectors incorporating intrinsic Gd using a GEANT4 modeling approach


Solid-state neutron detectors from heterostructures that incorporate Gd intrinsically or as a dopant may significantly benefit from the high thermal neutron capture cross section of gadolinium. Semiconducting devices with Gd atoms can act as a neutron capture medium and simultaneously detect the electronic signal that characterizes the interaction. Neutron capture in natural isotopic abundance gadolinium predominantly occurs via the formation of 158mGd, which decays to the ground state through the emission of high-energy gamma rays and an internal conversion electron. Detection of the internal conversion electron and/or the subsequent Auger electron emission provides a distinct and identifiable signature that neutron capture has occurred. Ensuring that the medium responds to these emissions is imperative to maximizing the efficiency and separating out other interactions from the radiation environment. A GEANT4 model, which includes incorporation of the nuclear structure of Gd, has been constructed to simulate the expected device behavior. This model allows the energy deposited from the decay of the meta-stable state to be localized and transported, providing for analysis of various device parameters. Device fabrication has been completed for Gd doped HfO2 on n-type silicon, Gd2O3 on p-type silicon and Gd2O3 on SiC for validation of the code. A preliminary evaluation of neutron detection capabilities of these devices using a GEANT4 modeling approach is presented.

This is a preview of subscription content, access via your institution.


  1. 1.

    D. Kramer, “DOE begins rationing helium-3”, Physics Today, 22–25, June 2010.

  2. 2.

    M.B. Chadwick, P. Oblozinsky, M. Herman at al., “ENDF/B-VII.0: Next Generation Evaluated Nuclear Data Library for Nuclear Science and Technology”, Nuclear Data Sheets, vol. 107, pp. 2931–3060, 2006.

  3. 3.

    Z.G. Ge, Y.X. Zhuang, T.J. Liu, J.S. Zhang, H.C. Wu, Z.X. Zhao, H.H. Xia, “The Updated Version of Chinese Evaluated Nuclear Data Library (CENDL-3.1)”, Proc. International Conference on Nuclear Data for Science and Technology, Jeju Island, Korea, April 26–30, 2010 (in press).

  4. 4.

    I. Ketsman, Y.B. Losovyj, A. Sokolov, J. Tang, Z. Wang, M.L. Natta, J.I. Brand, P.A. Dowben, Appl. Surf. Sci. 254, 4308 (2008).

    CAS  Article  Google Scholar 

  5. 5.

    Y.B. Losovyj, D. Wooten, J.C. Santana, J.M. An, K.D., Belashchenko, N. Lozova, J. Petrosky, A. Sokolov, J. Tang, W. Wang, N. Arulsamy, P.A. Dowben, J. Phys. Condens. Matter 21, 045602 (2009).

    Article  Google Scholar 

  6. 6.

    D. Schultz, B. Blasy, J.C. Santana, C. Young, J.C. Petrosky, J.W. McClory, D. LaGraffe, J.I. Brand, J. Tang, W. Wang, N. Schemm, S. Balkir, M. Bauer, I. Ketsman, R.W. Fairchild, Y.B. Losovyj, P.A. Dowben, J. Phys. D: Appl. Phys. 43, 075502 (2010).

    Article  Google Scholar 

  7. 7.

    Monte-Carlo Simulation of Electron Trajectory in Solids (CASINO), accessed August 2009. Available:

  8. 8.

    B. Thomas, “Neutron Detection Using Gadolinium-Based Diodes,” MS thesis, Department of Engineering Physics, Air Force Institute of Technology, Wright-Patterson AFB, OH, 2011.

  9. 9.

    C. Young, “Gadolinium Oxide / Silicon Thin Film Heterojunction Solid-State Neutron Detector,” MS thesis, Department of Engineering Physics, Air Force Institute of Technology, Wright-Patterson AFB, OH, 2010.

  10. 10.

    S. Agostinelli, et al., Nucl. Instrum. Methods Phys. Res. A 506, 250 (2003).

    CAS  Article  Google Scholar 

  11. 11.

    R.G. Helmer, Nuclear Data Sheets 101, 325 (2004).

    CAS  Article  Google Scholar 

  12. 12.

    GEANT4 Collaboration, “Data files for photon evaporation - version 2.1”, released February 2011. Available:

  13. 13.

    M.A. Ali, V.A. Khitrov, Y.V. Kholnov, A.M. Sukhovoj, A.V. Vojnov, J. Phys. G Nucl. Part. Phys. 20, 1943 (1994).

    CAS  Article  Google Scholar 

  14. 14.

    M.A. Islam, T.J. Kennett, W.V. Prestwich, Phys. Rev. C 25, 3184 (1982).

    CAS  Article  Google Scholar 

  15. 15.

    R.B. Firestone, H.D. Choi, R.M. Lindstrom, G.L. Molnar, S.F. Mughabghab, R. Paviotti-Corcuera, et al., Database of prompt gamma rays from slow neutron capture for elemental analysis, (Lawrence Berkeley National Laboratory, California, 2004) p. 132.

  16. 16.

    GEANT4 Collaboration, “Physics Reference Manual geant4.9.4”, released December 2010, p 499. Available:

  17. 17.

    F. Rosel, H.M. Fries, K. Alder and H.C. Pauli, At. Data Nucl. Data Tables 21 (1978).

  18. 18.

    Kinsey, et al., Can. J. Phys. 31, 1051 (1953).

    CAS  Article  Google Scholar 

  19. 19.

    Groshev, et al., Atomnaya Energiya 4, No 1, 5 (1958).

    Google Scholar 

  20. 20.

    F. Becvar, M. Krticka, I. Tomandl, J. Honzatko, F. Voss, K. Wisshak, F. Kappeler, AIP Conf. Proc. 529, 657 (2000).

    CAS  Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Abigail A. Bickley.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Bickley, A.A., Young, C., Thomas, B. et al. Performance evaluation of neutron detectors incorporating intrinsic Gd using a GEANT4 modeling approach. MRS Online Proceedings Library 1341, 403 (2011).

Download citation