Abstract
In recent years, there has been an increasing interest in thermal properties of materials. This arises mostly from the practical needs of heat removal and thermal management, which have now become critical issues for the continuing progress in electronic and optoelectronic industries. Another motivation for the study of thermal properties at nanoscale is from a fundamental science perspective. Thermal conductivity of different allotropes of carbon materials span a uniquely large range of values with the highest in graphene and carbon nanotube and the lowest in amorphous or disordered carbon. Here we describe the thermal properties of graphene and carbon-based materials and analyze the prospects of applications of carbon materials in thermal management.
This is a preview of subscription content, access via your institution.
References
- 1.
G. E. Moore, Electronics 38, 114 (1965).
- 2.
W. Haensch, E. J. Nowak, R. H. Dennard, P. M. Solomon, A. Bryant, O. H. Dokumaci, A. Kumar, X. Wang, et al. IBM Journal of Research and Development 50, 339 (2006).
- 3.
E. Pop, S. Sinha, and K. E. Goodson, Proceedings of the IEEE 94, 1587 (2006).
- 4.
A. A. Balandin, IEEE Spectrum, 29 (2009).
- 5.
D. G. Cahill, W. K. Ford, K. E. Goodson, G. D. Mahan, A. Majumdar, H. J. Maris, R. Merlin, and S. R. Phillpot, Journal of Applied Physics 93, 793 (2003).
- 6.
T, Borca-Tasciuc, D. Achimov, W. L. Liu, G. Chen, H.-W. Ren, C.- H. Lin, and S. S. Pei, Microscale Thermophys. Eng. 5, 225 (2001).
- 7.
A. A. Balandin, and K. L. Wang, Physical Review B 58, 1544 (1998).
- 8.
S. Lepri, R.Livi, and A. Politi, Physics Reports 377, 1(2003).
- 9.
G. Basile, C. Bernardin, and S. Olla, Physical Review Letters 96, 204303 (2006).
- 10.
C. W. Chang, D. Okawa, H. Garcia, A. Majumdar, and A. Zettl, Physical Review Letters 101, 075903 (2008).
- 11.
O. Narayan, and S. Ramaswamy, Physical Review Letters 89, 200601 (2002).
- 12.
K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I.V. Grigorieva, and A. A. Firsov, Science 306, 666 (2004).
- 13.
A. K. Geim, and K. S. Novoselov, Nature Materials 6, 183 (2007).
- 14.
K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S.V. Dubonos, and A. A. Firsov, Nature 438, 197 (2005).
- 15.
A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, Physical Review Letters 97, 187401 (2006).
- 16.
I. Calizo, W. Bao, F. Miao, C. N. Lau, and A. A. Balandin, Applied Physics Letters 91, 201904 (2007).
- 17.
A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, and C. N. Lau, Nano Letters 8, 902 (2008).
- 18.
S. Ghosh, I. Calizo, D. Teweldebrhan, E. P. Pokatilov, D. L. Nika, A. A. Balandin, W. Bao, F. Miao, and C. N. Lau, Applied Physics Letters 92, 151911 (2008).
- 19.
S. Ghosh, W. Bao, D. L. Nika, S. Subrina, E. P. Pokatilov, C. N. Lau, and A. A. Balandin, Nature Materials 9, 555 (2010).
- 20.
B. T. Kelly, Physics of Graphite, Applied Science Publishers, London (1986).
- 21.
K. Sun, M. A. Stroscio, and M. Dutta, Superlattices and Microstructures 45, 60 (2009)
- 22.
P. G. Klemens, “Unusually high thermal conductivity in carbon nanotubes,” Proceedings of the Twenty-Sixth International Thermal Conductivity Conference, ed. R. B. Dinwiddie, (Destech Publications, Lancaster, Pennsylvania, 2004) 26, pp. 48–57.
- 23.
A. L. Woodcraft, M. Barucci, P. R. Hastings, L. Lolli, V. Martelli, L. Risegari, and G. Ventura, Cryogenics 49, 159 (2009).
- 24.
D. G, Cahill, and R. O. Pohl, Solid State Communications, 70, 927 (1989).
- 25.
C. Casiraghi, A. C. Ferrari, and J. Robertson, Physical Review B 72, 085401 (2005).
- 26.
M. Shamsa, W. L. Liu, A. A. Balandin, C. Casiraghi, W. I. Milne, and A. C. Ferrari, Applied Physics Letters 89, 161921 (2006).
- 27.
A. A. Balandin, M. Shamsa, W. L. Liu, C. Casiraghi, and A. C. Ferrari, Applied Physics Letters 93, 043115 (2008).
- 28.
W. L. Liu, M. Shamsa, I. Calizo, A. A. Balandin, V. Ralchenko, A. Popovich, and A. Saveliev, Applied Physics Letters 89, 171915 (2006).
- 29.
M. Shamsa, S. Ghosh, I. Calizo, V. Ralchenko, A. Popovich, and A. A. Balandin, Journal of Applied Physics 103, 083538 (2008).
- 30.
L. Braginsky, V. Shklover, H. Hofmann, and P. Bowen, Physical Review B 70, 134201 (2004).
- 31.
S. Ijima, Nature 354, 56 (1991).
- 32.
R. S. Ruoff, and D. C. Lorents, Carbon 33, 925 (1995).
- 33.
M. A. Osman, and D. Srivastava, Nanotechnolgy 12, 21 (2001).
- 34.
J. Hone, M.Whitney, C. Piskoti, and A. Zettl, Physical Review B 59, R2514 (1999).
- 35.
L. X. Benedict, S. G. Louie, and M. L. Cohen, Solid State Communications 100, 177 (1996).
- 36.
P. Kim, L. Shi, A. Majumder, P. L. McEuen, Physical Review Letters 87, 215502 (2001).
- 37.
E. Pop, D. Mann, Q. Wang, K. Goodson, and H. Dai, Nano Letters 6, 96 (2006).
- 38.
A. E. Aliev, M. H. Lima, E. M. Silverman, and R. H. Baughman, Nanotechnology 21, 035709 (2010).
- 39.
S. Berber, Y-K. Kwon, and D. Tomanek. Physical Review Letters 84, 4613 (2000).
- 40.
L. A. Jauregui, Y. Yue, A. N. Sidorov, J. Hu, Q. Yu, G. Lopez, R. Jalilian, D. K. Benjamin, et al., Electrochemical Society Transactions 28, 73 (2010).
- 41.
W. Cai, A. L. Moore, Y. Zhu, X. Li, S. Chen, L. Shi, and R. S. Ruoff, Nano Letters 10, 1645 (2010).
- 42.
S. Chen, A. L. Moore, W. Cai, J. W. Suk, J. An, C. Mishra, C. Amos, C. W. Magnuson, J. Kang, L. Shi, and R. S. Ruoff, ACS Nano 5, 321 (2011).
- 43.
C. Faugeras, B. Faugeras, M. Orlita, M. Potemski, R. R. Nair, and A. K. Geim, ACS Nano 4, 1889 (2010).
- 44.
J. H. Seol, I. Jo, A. R, Moore, L. Lindsay, Z. H. Aitken, M. T. Pettes, X. Li, Z. Yao, R. Huang, D. Broido, N. Mingo, and R. S. Ruoff, Science 328, 213 (2010).
- 45.
D. L. Nika, E. P. Pokatilov, A. S. Askerov, and A. A. Balandin, Physical Review B 79, 155413 (2009).
- 46.
D. L. Nika, S. Ghosh, E. P. Pokatilov, and A. A. Balandin, Applied Physics Letters 94, 203103 (2009).
- 47.
P. G. Klemens, J. Wide Bandgap Materials 7, 332 (2000).
- 48.
P. G. Klemens, Int. J. Thermophysics 22, 265 (2001).
- 49.
S. Ghosh, W. Bao, D. L. Nika, S. Subrina, E. P. Pokatilov, C. N. Lau, and A. A. Balandin, Nature Materials 9, 555 ( 2010).
- 50.
K. Saito, and A. Dhar, Physical Review Letters 104, 040601 (2010).
- 51.
W. Jang, Z. Chen, W. Bao, C. N. Lau, and C. Dames, Nano Letters 10, 3909 (2010).
- 52.
A. Naeemi, and J. D. Meindl, IEEE Electron Device Letters 28, 428 (2007).
- 53.
J. Lan, J. S. Wang, C. K. Gan, and S. K. Chin, Physical Review B 79, 115401 (2009).
- 54.
R. Murali, Y. Yang, K. Brenner, T. Beck, and J. D. Meindl, Applied Physics Letters 94, 243114 (2009).
- 55.
J. Hu, X. Ruan, and Y. P. Chen, Nano Letters 9, 2730 (2009).
- 56.
Z. Guo, D. Zhang, and X-G. Gong, Applied Physics Letters 95, 163103 (2009).
- 57.
W. J. Evans, L. Hu, and P. Keblinski, Applied Physics Letters 96, 203103 (2010).
- 58.
W.-R. Zhong, M. P. Zhang, B. Q. Ai, and D. Q. Zheng, Applied Physics Letters 98, 113107 (2011).
- 59.
S. Subrina, D. Kotchekov, and A. A. Balandin, IEEE Electron Device Letters 30, 1281 (2009).
- 60.
Y. K. Koh, M. H. Bae, D. G. Cahill, and E. Pop, Nano Letters 10, 4363 (2010).
- 61.
K. M. F. Sahil, V. Goyal, and A. A. Balandin, ECS Proceeds, (2011).
- 62.
A. Yu, M. E. Itkis, E. Bekyarova, and R. C. Haddon, Applied Physics Letters 89, 133102 (2006).
Author information
Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Ghosh, S., Balandin, A.A. Thermal Properties of Graphene and Carbon Based Materials: Prospects of Thermal Management Applications. MRS Online Proceedings Library 1344, 1102 (2011). https://doi.org/10.1557/opl.2011.1369
Published: