Thermal Properties of Graphene and Carbon Based Materials: Prospects of Thermal Management Applications

Abstract

In recent years, there has been an increasing interest in thermal properties of materials. This arises mostly from the practical needs of heat removal and thermal management, which have now become critical issues for the continuing progress in electronic and optoelectronic industries. Another motivation for the study of thermal properties at nanoscale is from a fundamental science perspective. Thermal conductivity of different allotropes of carbon materials span a uniquely large range of values with the highest in graphene and carbon nanotube and the lowest in amorphous or disordered carbon. Here we describe the thermal properties of graphene and carbon-based materials and analyze the prospects of applications of carbon materials in thermal management.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    G. E. Moore, Electronics 38, 114 (1965).

    Google Scholar 

  2. 2.

    W. Haensch, E. J. Nowak, R. H. Dennard, P. M. Solomon, A. Bryant, O. H. Dokumaci, A. Kumar, X. Wang, et al. IBM Journal of Research and Development 50, 339 (2006).

    CAS  Article  Google Scholar 

  3. 3.

    E. Pop, S. Sinha, and K. E. Goodson, Proceedings of the IEEE 94, 1587 (2006).

    CAS  Article  Google Scholar 

  4. 4.

    A. A. Balandin, IEEE Spectrum, 29 (2009).

  5. 5.

    D. G. Cahill, W. K. Ford, K. E. Goodson, G. D. Mahan, A. Majumdar, H. J. Maris, R. Merlin, and S. R. Phillpot, Journal of Applied Physics 93, 793 (2003).

    CAS  Article  Google Scholar 

  6. 6.

    T, Borca-Tasciuc, D. Achimov, W. L. Liu, G. Chen, H.-W. Ren, C.- H. Lin, and S. S. Pei, Microscale Thermophys. Eng. 5, 225 (2001).

    CAS  Article  Google Scholar 

  7. 7.

    A. A. Balandin, and K. L. Wang, Physical Review B 58, 1544 (1998).

    CAS  Article  Google Scholar 

  8. 8.

    S. Lepri, R.Livi, and A. Politi, Physics Reports 377, 1(2003).

  9. 9.

    G. Basile, C. Bernardin, and S. Olla, Physical Review Letters 96, 204303 (2006).

    Article  CAS  Google Scholar 

  10. 10.

    C. W. Chang, D. Okawa, H. Garcia, A. Majumdar, and A. Zettl, Physical Review Letters 101, 075903 (2008).

    CAS  Article  Google Scholar 

  11. 11.

    O. Narayan, and S. Ramaswamy, Physical Review Letters 89, 200601 (2002).

    Article  CAS  Google Scholar 

  12. 12.

    K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I.V. Grigorieva, and A. A. Firsov, Science 306, 666 (2004).

    CAS  Google Scholar 

  13. 13.

    A. K. Geim, and K. S. Novoselov, Nature Materials 6, 183 (2007).

    CAS  Article  Google Scholar 

  14. 14.

    K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S.V. Dubonos, and A. A. Firsov, Nature 438, 197 (2005).

  15. 15.

    A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, Physical Review Letters 97, 187401 (2006).

    CAS  Article  Google Scholar 

  16. 16.

    I. Calizo, W. Bao, F. Miao, C. N. Lau, and A. A. Balandin, Applied Physics Letters 91, 201904 (2007).

    Article  CAS  Google Scholar 

  17. 17.

    A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, and C. N. Lau, Nano Letters 8, 902 (2008).

    CAS  Article  Google Scholar 

  18. 18.

    S. Ghosh, I. Calizo, D. Teweldebrhan, E. P. Pokatilov, D. L. Nika, A. A. Balandin, W. Bao, F. Miao, and C. N. Lau, Applied Physics Letters 92, 151911 (2008).

    Article  CAS  Google Scholar 

  19. 19.

    S. Ghosh, W. Bao, D. L. Nika, S. Subrina, E. P. Pokatilov, C. N. Lau, and A. A. Balandin, Nature Materials 9, 555 (2010).

    CAS  Article  Google Scholar 

  20. 20.

    B. T. Kelly, Physics of Graphite, Applied Science Publishers, London (1986).

  21. 21.

    K. Sun, M. A. Stroscio, and M. Dutta, Superlattices and Microstructures 45, 60 (2009)

    CAS  Article  Google Scholar 

  22. 22.

    P. G. Klemens, “Unusually high thermal conductivity in carbon nanotubes,” Proceedings of the Twenty-Sixth International Thermal Conductivity Conference, ed. R. B. Dinwiddie, (Destech Publications, Lancaster, Pennsylvania, 2004) 26, pp. 48–57.

  23. 23.

    A. L. Woodcraft, M. Barucci, P. R. Hastings, L. Lolli, V. Martelli, L. Risegari, and G. Ventura, Cryogenics 49, 159 (2009).

    CAS  Article  Google Scholar 

  24. 24.

    D. G, Cahill, and R. O. Pohl, Solid State Communications, 70, 927 (1989).

    Article  Google Scholar 

  25. 25.

    C. Casiraghi, A. C. Ferrari, and J. Robertson, Physical Review B 72, 085401 (2005).

    Article  CAS  Google Scholar 

  26. 26.

    M. Shamsa, W. L. Liu, A. A. Balandin, C. Casiraghi, W. I. Milne, and A. C. Ferrari, Applied Physics Letters 89, 161921 (2006).

    Article  CAS  Google Scholar 

  27. 27.

    A. A. Balandin, M. Shamsa, W. L. Liu, C. Casiraghi, and A. C. Ferrari, Applied Physics Letters 93, 043115 (2008).

    Article  CAS  Google Scholar 

  28. 28.

    W. L. Liu, M. Shamsa, I. Calizo, A. A. Balandin, V. Ralchenko, A. Popovich, and A. Saveliev, Applied Physics Letters 89, 171915 (2006).

    Article  CAS  Google Scholar 

  29. 29.

    M. Shamsa, S. Ghosh, I. Calizo, V. Ralchenko, A. Popovich, and A. A. Balandin, Journal of Applied Physics 103, 083538 (2008).

    Article  CAS  Google Scholar 

  30. 30.

    L. Braginsky, V. Shklover, H. Hofmann, and P. Bowen, Physical Review B 70, 134201 (2004).

    Article  CAS  Google Scholar 

  31. 31.

    S. Ijima, Nature 354, 56 (1991).

    Article  Google Scholar 

  32. 32.

    R. S. Ruoff, and D. C. Lorents, Carbon 33, 925 (1995).

    CAS  Article  Google Scholar 

  33. 33.

    M. A. Osman, and D. Srivastava, Nanotechnolgy 12, 21 (2001).

    CAS  Article  Google Scholar 

  34. 34.

    J. Hone, M.Whitney, C. Piskoti, and A. Zettl, Physical Review B 59, R2514 (1999).

  35. 35.

    L. X. Benedict, S. G. Louie, and M. L. Cohen, Solid State Communications 100, 177 (1996).

    CAS  Article  Google Scholar 

  36. 36.

    P. Kim, L. Shi, A. Majumder, P. L. McEuen, Physical Review Letters 87, 215502 (2001).

    CAS  Article  Google Scholar 

  37. 37.

    E. Pop, D. Mann, Q. Wang, K. Goodson, and H. Dai, Nano Letters 6, 96 (2006).

    CAS  Article  Google Scholar 

  38. 38.

    A. E. Aliev, M. H. Lima, E. M. Silverman, and R. H. Baughman, Nanotechnology 21, 035709 (2010).

    Article  CAS  Google Scholar 

  39. 39.

    S. Berber, Y-K. Kwon, and D. Tomanek. Physical Review Letters 84, 4613 (2000).

    CAS  Article  Google Scholar 

  40. 40.

    L. A. Jauregui, Y. Yue, A. N. Sidorov, J. Hu, Q. Yu, G. Lopez, R. Jalilian, D. K. Benjamin, et al., Electrochemical Society Transactions 28, 73 (2010).

    CAS  Google Scholar 

  41. 41.

    W. Cai, A. L. Moore, Y. Zhu, X. Li, S. Chen, L. Shi, and R. S. Ruoff, Nano Letters 10, 1645 (2010).

    CAS  Article  Google Scholar 

  42. 42.

    S. Chen, A. L. Moore, W. Cai, J. W. Suk, J. An, C. Mishra, C. Amos, C. W. Magnuson, J. Kang, L. Shi, and R. S. Ruoff, ACS Nano 5, 321 (2011).

    Article  CAS  Google Scholar 

  43. 43.

    C. Faugeras, B. Faugeras, M. Orlita, M. Potemski, R. R. Nair, and A. K. Geim, ACS Nano 4, 1889 (2010).

    CAS  Article  Google Scholar 

  44. 44.

    J. H. Seol, I. Jo, A. R, Moore, L. Lindsay, Z. H. Aitken, M. T. Pettes, X. Li, Z. Yao, R. Huang, D. Broido, N. Mingo, and R. S. Ruoff, Science 328, 213 (2010).

    CAS  Article  Google Scholar 

  45. 45.

    D. L. Nika, E. P. Pokatilov, A. S. Askerov, and A. A. Balandin, Physical Review B 79, 155413 (2009).

    Article  CAS  Google Scholar 

  46. 46.

    D. L. Nika, S. Ghosh, E. P. Pokatilov, and A. A. Balandin, Applied Physics Letters 94, 203103 (2009).

    Article  CAS  Google Scholar 

  47. 47.

    P. G. Klemens, J. Wide Bandgap Materials 7, 332 (2000).

    CAS  Article  Google Scholar 

  48. 48.

    P. G. Klemens, Int. J. Thermophysics 22, 265 (2001).

    CAS  Article  Google Scholar 

  49. 49.

    S. Ghosh, W. Bao, D. L. Nika, S. Subrina, E. P. Pokatilov, C. N. Lau, and A. A. Balandin, Nature Materials 9, 555 ( 2010).

  50. 50.

    K. Saito, and A. Dhar, Physical Review Letters 104, 040601 (2010).

    Article  CAS  Google Scholar 

  51. 51.

    W. Jang, Z. Chen, W. Bao, C. N. Lau, and C. Dames, Nano Letters 10, 3909 (2010).

    CAS  Article  Google Scholar 

  52. 52.

    A. Naeemi, and J. D. Meindl, IEEE Electron Device Letters 28, 428 (2007).

    CAS  Article  Google Scholar 

  53. 53.

    J. Lan, J. S. Wang, C. K. Gan, and S. K. Chin, Physical Review B 79, 115401 (2009).

    Article  CAS  Google Scholar 

  54. 54.

    R. Murali, Y. Yang, K. Brenner, T. Beck, and J. D. Meindl, Applied Physics Letters 94, 243114 (2009).

    Article  CAS  Google Scholar 

  55. 55.

    J. Hu, X. Ruan, and Y. P. Chen, Nano Letters 9, 2730 (2009).

    CAS  Article  Google Scholar 

  56. 56.

    Z. Guo, D. Zhang, and X-G. Gong, Applied Physics Letters 95, 163103 (2009).

    Article  CAS  Google Scholar 

  57. 57.

    W. J. Evans, L. Hu, and P. Keblinski, Applied Physics Letters 96, 203103 (2010).

    Article  CAS  Google Scholar 

  58. 58.

    W.-R. Zhong, M. P. Zhang, B. Q. Ai, and D. Q. Zheng, Applied Physics Letters 98, 113107 (2011).

    Article  CAS  Google Scholar 

  59. 59.

    S. Subrina, D. Kotchekov, and A. A. Balandin, IEEE Electron Device Letters 30, 1281 (2009).

    CAS  Article  Google Scholar 

  60. 60.

    Y. K. Koh, M. H. Bae, D. G. Cahill, and E. Pop, Nano Letters 10, 4363 (2010).

    CAS  Article  Google Scholar 

  61. 61.

    K. M. F. Sahil, V. Goyal, and A. A. Balandin, ECS Proceeds, (2011).

  62. 62.

    A. Yu, M. E. Itkis, E. Bekyarova, and R. C. Haddon, Applied Physics Letters 89, 133102 (2006).

    Article  CAS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Suchismita Ghosh.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Ghosh, S., Balandin, A.A. Thermal Properties of Graphene and Carbon Based Materials: Prospects of Thermal Management Applications. MRS Online Proceedings Library 1344, 1102 (2011). https://doi.org/10.1557/opl.2011.1369

Download citation