All-Carbon Composite for Photovoltaics


Graphitic nanomaterials such as graphene, carbon nanotubes (CNT), and C60 fullerenes are promising materials for energy applications because of their extraordinary electrical and optical properties. However, graphitic materials are not readily dispersible in water. Strategies to fabricate all-carbon nanocomposites typically involve covalent linking or surface functionalization, which breaks the conjugated electronic networks or contaminates functional carbon surfaces. Here, we demonstrate a facile surfactant-free strategy to create such all-carbon composites. Fullerenes, unfunctionalized single walled carbon nanotubes, and graphene oxide sheets can be conveniently co-assembled in water, resulting in a stable colloidal dispersion amenable to thin film processing. The thin film composite can be made conductive by mild thermal heating. Photovoltaic devices fabricated using the all-carbon composite as the active layer demonstrated an on-off ratio of nearly 106, an open circuit voltage of 0.59V, and a power conversion efficiency of 0.21%. This photoconductive and photovoltaic response is unprecedented among all-carbon based materials. Therefore, this surfactant-free, aqueous based approach to making all-carbon composites is promising for applications in optoelectronic devices.

This is a preview of subscription content, access via your institution.


  1. (1)

    Yamamoto, Y. Fukushima, T. Suna, Y. Ishii, N. Saeki, A. Seki, S. Tagawa, S. Taniguchi, M. Kawai, T.; Aida, T. Science 2006, 314, 1761–1764.

    CAS  Article  Google Scholar 

  2. (2)

    Nasibulin, A. G. Pikhitsa, P. V. Jiang, H. Brown, D. P. Krasheninnikov, A. V. Anisimov, A. S. Queipo, P. Moisala, A. Gonzalez, D. Lientschnig, G. Hassanien, A. Shandakov, S. D. Lolli, G. Resasco, D. E. Choi, M. Tomanek, D.; Kauppinen, E. I. Nat Nano 2007, 2, 156–161.

    CAS  Article  Google Scholar 

  3. (3)

    Umeyama, T. Tezuka, N. Fujita, M. Hayashi, S. Kadota, N. Matano, Y.; Imahori, H. Chem. Eur. J. 2008, 14, 4875–4885.

    CAS  Article  Google Scholar 

  4. (4)

    Kalita, G. Adhikari, S. Aryal, H. R. Umeno, M. Afre, R. Soga, T.; Sharon, M. Appl. Phys. Lett. 2008, 92, 063508.

  5. (5)

    Yamamoto, Y. Zhang, G. Jin, W. Fukushima, T. Ishii, N. Saeki, A. Seki, S. Tagawa, S. Minari, T. Tsukagoshi, K.; Aida, T. Proceedings of the National Academy of Sciences 2009, 106, 21051–21056.

    CAS  Article  Google Scholar 

  6. (6)

    Umeyama, T. Tezuka, N. Seki, S. Matano, Y. Nishi, M. Hirao, K. Lehtivuori, H. Tkachenko, N. V. Lemmetyinen, H. Nakao, Y. Sakaki, S.; Imahori, H. Adv. Mater. 2010, 22, 1767–1770.

  7. (7)

    Zhang, X. Huang, Y. Wang, Y. Ma, Y. Liu, Z.; Chen, Y. Carbon 2009, 47, 334–337.

  8. (8)

    Zhu, H. Wei, J. Wang, K.; Wu, D. Solar Energy Materials and Solar Cells 2009, 93, 1461–1470.

    CAS  Article  Google Scholar 

  9. (9)

    Sariciftci, N. S. Smilowitz, L. Heeger, A. J.; Wudl, F. Science 1992, 258, 1474–1476.

    CAS  Article  Google Scholar 

  10. (10)

    Tans, S. J. Verschueren, A. R. M.; Dekker, C. Nature 1998, 393, 49–52.

    CAS  Article  Google Scholar 

  11. (11)

    Dürkop, T. Getty, S. A. Cobas, E.; Fuhrer, M. S. Nano Letters 2004, 4, 35–39.

    Article  Google Scholar 

  12. (12)

    Gilje, S. Han, S. Wang, M. Wang, K. L.; Kaner, R. B. Nano Letters 2007, 7, 3394–3398.

    CAS  Article  Google Scholar 

  13. (13)

    Eda, G. Fanchini, G.; Chhowalla, M. Nat Nano 2008, 3, 270–274.

    CAS  Article  Google Scholar 

  14. (14)

    Arnold, M. S. Zimmerman, J. D. Renshaw, C. K. Xu, X. Lunt, R. R. Austin, C. M.; Forrest, S. R. Nano Letters 2009, 9, 3354–3358.

    CAS  Article  Google Scholar 

  15. (15)

    Kim, F. Cote, L. J.; Huang, J. Advanced Materials 2010, 22, 1954–1958.

    CAS  Article  Google Scholar 

  16. (16)

    Kim, J. Cote, L. J. Kim, F. Yuan, W. Shull, K. R.; Huang, J. Journal of the American Chemical Society 2010, 132, 8180–8186.

    CAS  Article  Google Scholar 

  17. (17)

    Cote, L. J. Kim, J. Tung, V. C. Luo, J. Kim, F.; Huang, J. Pure Appl. Chem. 2011, 83, 95–110.

    CAS  Article  Google Scholar 

  18. (18)

    Schniepp, H. C. Li, J.-L. McAllister, M. J. Sai, H. Herrera-Alonso, M. Adamson, D. H. Prud’homme, R. K. Car, R. Saville, D. A.; Aksay, I. A. The Journal of Physical Chemistry B 2006, 110, 8535–8539.

  19. (19)

    Stankovich, S. Dikin, D. A. Dommett, G. H. B. Kohlhaas, K. M. Zimney, E. J. Stach, E. A. Piner, R. D. Nguyen, S. T.; Ruoff, R. S. Nature 2006, 442, 282–286.

    CAS  Article  Google Scholar 

  20. (20)

    Cote, L. J. Cruz-Silva, R.; Huang, J. Journal of the American Chemical Society 2009, 131, 11027–11032.

    CAS  Article  Google Scholar 

  21. (21)

    Hummers, W. S.; Offeman, R. E. Journal of the American Chemical Society 1958, 80, 1339.

  22. (22)

    Cote, L. J. Kim, F.; Huang, J. Journal of the American Chemical Society 2009, 131, 1043–1049.

    CAS  Article  Google Scholar 

  23. (23)

    Kim, F. Luo, J. Cruz-Silva, R. Cote, L. J. Sohn, K.; Huang, J. Adv. Funct. Mater. 2010, 20, n/a-n/a.

  24. (24)

    Erickson, K. Erni, R. Lee, Z. Alem, N. Gannett, W.; Zettl, A. Adv. Mater. 2010, n/a-n/a.

  25. (25)

    Hare, J. P. Kroto, H. W.; Taylor, R. Chemical Physics Letters 1991, 177, 394–398.

    CAS  Article  Google Scholar 

  26. (26)

    Ausman, K. D. Piner, R. Lourie, O. Ruoff, R. S.; Korobov, M. The Journal of Physical Chemistry B 2000, 104, 8911–8915.

    CAS  Article  Google Scholar 

  27. (27)

    Li, D. Muller, M. B. Gilje, S. Kaner, R. B.; Wallace, G. G. Nat Nano 2008, 3, 101–105.

    CAS  Article  Google Scholar 

  28. (28)

    Dresselhaus, M. S. Jorio, A. Hofmann, M. Dresselhaus, G.; Saito, R. Nano Letters 2010, 10, 751–758.

    CAS  Article  Google Scholar 

  29. (29)

    Sato, N. Saito, Y.; Shinohara, H. Chemical Physics 1992, 162, 433–438.

    CAS  Article  Google Scholar 

  30. (30)

    Shirley, E. L.; Louie, S. G. Phys. Rev. Lett. 1993, 71, 133.

Download references

Author information



Corresponding author

Correspondence to Alvin T. L. Tan.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Tan, A.T.L., Tung, V.C., Kim, J. et al. All-Carbon Composite for Photovoltaics. MRS Online Proceedings Library 1344, 1036 (2011).

Download citation