Functionalization and Environmental Stabilization of ZnO Nanobridge Sensors Fabricated using Carbonized Photoresist

Abstract

ZnO nanobridge sensors were selectively grown and electrically connected using lithographically patterned carbonized photoresist (C-PR). As ZnO is known to dissolve in deionized (DI) water, parylene-A was investigated as a moisture barrier and potential functionalization platform. A chemical vapor deposition (CVD) process for parylene-A was developed and it was demonstrated that parylene-A coated ZnO NWs do not show any signs of dissolution after 24 hours in an aqueous solution. The impact of the parylene-A coating on the electrical performance and sensitivity of ZnO nanobridge devices was investigated. A comparison of UV, O2, and H2O sensitivity between uncoated and coated devices revealed that a thin coating of parylene-A attenuated all of these responses, suggesting the ability to modulate environmental sensitivity using this non-covalently bound polymer passivation layer.

This is a preview of subscription content, access via your institution.

References

  1. 1

    G. Yu, C.M. Lieber, Pure Appl. Chem. 2010, 82, 2295.

    CAS  Article  Google Scholar 

  2. 2

    M. S. Islam, S. Sharma, T. U. Kamins, R. S. Williams, Appl. Phys. A 2005, 80, 1133.

    Article  Google Scholar 

  3. 3

    A. Chaudhry, V. Ramamurthi, E. Fong, M. S. Islam, Nano. Letters. 2007, 7, 1536.

    CAS  Article  Google Scholar 

  4. 4

    J. F. Conley, L. Stecker, Y. Ono, Appl. Phys. Lett. 2005, 87, 223114.

    Article  Google Scholar 

  5. 5

    J. F. Conley, L. Stecker, Y. Ono, Nanotechnology 2005, 16, 292.

    CAS  Article  Google Scholar 

  6. 6

    C. Cheng, M. Lei, L. Feng, T. L. Wong, K. M. Ho, K. K. Fung, M. M. T. Loy, D. Yu, N. Wang, ACS Nano 2009, 3, 53.

    CAS  Article  Google Scholar 

  7. 7

    Y. Cui, Q. Wei, H. Park, C. M. Lieber, Science 2001, 17, 1289.

    Article  Google Scholar 

  8. 8

    N. S. Ramgir, Y. Yang, M. Zacharias, Small 2010, 6, 1705.

    CAS  Article  Google Scholar 

  9. 9

    M. H. Huang, Y. Y. Wu, H. Feick, N. Tran, E. Weber, P. D. Yang, Adv. Mater. 2001, 13, 113.

    CAS  Article  Google Scholar 

  10. 10

    C.-C. Huang, B. D. Pelatt, J. F. Conley, Jr., Nanotechnology 2010, 21, 195307.

    Article  Google Scholar 

  11. 11

    B. D. Pelatt, C.-C. Huang, J. F. Conley, Jr., Solid State Electron. 2010, 54, 1143.

    CAS  Article  Google Scholar 

  12. 12

    A. D. Mason, C.-C. Huang, S. Kondo, M. T. Koesdjojo, Y. H. Tennico, V. T. Remcho, J. F. Conley, Jr., Sensor. Actuat. B-Chem. 2011 155, 245.

    CAS  Article  Google Scholar 

  13. 13

    Q. H. Li, T. Gao, Y. G. Wang, T. H. Wang, Appl. Phys. Lett. 2005, 86, 123117.

    Article  Google Scholar 

  14. 14

    Y. Li, F. D. Valle, M. Simonnet, I. Yamada, J.-J. Delaunay, Appl. Phys. Lett. 2009, 94, 023110.

    Google Scholar 

  15. 15

    B.-J. Jeon, M.-H. Kim, J.-C. Pyun, Sensor. Actuat. B-Chem. 2011, 154, 89.

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Mason, A.D., Huang, CC., Koesdjojo, M.T. et al. Functionalization and Environmental Stabilization of ZnO Nanobridge Sensors Fabricated using Carbonized Photoresist. MRS Online Proceedings Library 1350, 1106 (2011). https://doi.org/10.1557/opl.2011.1334

Download citation