Synthesis of Fulleride Thin Films with Ultra-low Thermal Conductivity.

Abstract

In the past two decades, there has been growing interests in the design and improvement of thermoelectric (TE) materials and devices largely due to their potential use in technologies such as: 1) the conversion of waste heat to electricity, 2) solid-state refrigeration and heating, 3) biomedical batteries, and 4) power sources for both ground and space-based electronics.1 Recent research has suggested that by using nanotechnology (i.e. nanostructuring / nanoengineering) large advances can be gained in controlling interfaces to hinder thermal transport while allowing electrical movement. Thin film structuring of thermoelectric materials potentially offers several advantages over bulk thermoelectric materials especially for cooling applications. Furthermore, others have advocated that by making thermoelectric materials very small, one can achieve an enhanced ZT (the thermoelectric figure of merit) due to quantum confinement effects.2-5 The structure and physical properties of doped fullerene materials were investigated for use as electrically conducting phonon blocking layers. The synthesis and thermal properties of ZnxC60 thin films are reported. Preliminary results have shown the formation of amorphous fullerides structures with thermal conductivities as low as 0.13 Wm-1K-1. Physical and structural measurements (e.g. Electron Microscopy, Electron Diffraction, and Raman Spectroscopy) will be reported detailing the unique structure-property relationships in these materials.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    Tritt, T. M.; Subramanian, M. A. Thermoelectric materials, phenomena, and applications: a bird’s eye view. MRS Bulletin 2006, 31 (3), 188.

    Article  Google Scholar 

  2. 2.

    Balandin, A.; Wang, K. L. Effect of phonon confinement on the thermoelectric figure of merit of quantum wells. Journal of Applied Physics 1998, 84 (11), 6149–6153.

    CAS  Article  Google Scholar 

  3. 3.

    Bulusu, A.; Walker, D. G. Effect of quantum confinement on the thermoelectric properties of semiconductor 2D thin films and 1D wires. In Thermomechanical Phenomena in Electronic Systems -Proceedings of the Intersociety Conference; Institute of Electrical and Electronics Engineers Inc.: San Diego, CA, United states, 2006; pp 1299–1305.

    Google Scholar 

  4. 4.

    Hicks, L. D.; Harman, T. C.; Sun, X.; Dresselhaus, M. S. Experimental study of the effect of quantum-well structures on the thermoelectric figure of merit. Physical Review B (Condensed Matter) 1996, 53 (16), 10493–10496.

    Article  Google Scholar 

  5. 5.

    Huber, T. E.; Nikolaeva, A.; Gitsu, D.; Konopko, L.; Graf, M. J. Quantum confinement and surface-state effects in bismuth nanowires. Physica E 2007, 37 (12), 194–199.

    CAS  Article  Google Scholar 

  6. 6.

    Chen, G.; Dresselhaus, M. S.; Dresselhaus, G.; Fleurial, J. P.; Caillat, T. Recent developments in thermoelectric materials. International Materials Reviews 2003, 48 (1), 45–66.

    CAS  Article  Google Scholar 

  7. 7.

    Vashaee, D.; Yan, Z.; Shakouri, A.; Gehong, Z.; Yi-Jen, C. Cross-plane Seebeck coefficient in superlattice structures in the miniband conduction regime. Physical Review B (Condensed Matter and Materials Physics) 2006, 74 (19), 195315–1.

    Article  Google Scholar 

  8. 8.

    Venkatasubramanian, R.; Siivola, E.; Colpitts, T.; O’Quinn, B. Thin-film thermoelectric devices with high room-temperature figures of merit. Nature 2001, 413 (6856), 597–602.

    CAS  Article  Google Scholar 

  9. 9.

    Zebarjadi, M.; Bian, Z.; Singh, R.; Shakouri, A.; Wortman, R.; Rawat, V.; Sands, T. Thermoelectric transport in a ZrN/ScN superlattice. Journal of Electronic Materials 2009, 38 (7), 960–963.

    CAS  Article  Google Scholar 

  10. 10.

    Schmidt, A.; Chiesa, M.; Chen, X.; Chen, G. An optical pump-probe technique for measuring the thermal conductivity of liquids. Review of Scientific Instruments 2008, 79 (6).

  11. 11.

    Bethune, D. S.; Meijer, G.; Tang, W. C.; Rosen, H. J. The vibrational Raman spectra of purified solid films of C60 and C70. Chemical Physics Letters 1990, 174 (3–4), 219–222.

    CAS  Article  Google Scholar 

  12. 12.

    Li, Y.; Wang, Y.; Xu, W.; Hou, J. G.; Zhang, Y. H. Study of microstructure and interfacial interaction of Al-C60 co-evaporated films. In Physica C (Netherlands); Elsevier: Netherlands, 1997; pp 737–738.

    Google Scholar 

  13. 13.

    Talyzin, A. V.; Jansson, U. A comparative Raman study of some transition metal fullerides. Thin Solid Films 2003, 429 (1–2), 96–101.

    CAS  Article  Google Scholar 

  14. 14.

    Wang, K. A.; Wang, Y.; Zhou, P.; Holden, J. M.; Ren, S. l.; Hager, G. T.; Ni, H. F.; Eklund, P. C.; Dresselhaus, G.; Dresselhaus, M. S. Raman scattering in C_{60} and alkali-metal-doped C_{60} films. Phys. Rev. B 1992, 45 (4), 1955.

    CAS  Article  Google Scholar 

  15. 15.

    Chase, S. J.; Mitch, M. G.; Lannin, J. S.; Olson, C. G. Effects of disorder on alkali-doped C_{60} photoemission and Raman spectra. Phys. Rev. B 1998, 58 (23), 15491.

    CAS  Article  Google Scholar 

  16. 16.

    Cahill, D. G. Analysis of heat flow in layered structures for time-domain thermoreflectance. Review of Scientific Instruments 2004, 75 (12), 5119–5122.

    CAS  Article  Google Scholar 

  17. 17.

    Markin, A.; Smirnova, N.; Boronina, I.; Ruchenin, V.; Lyapin, A. Thermodynamic properties of graphite-like nanostructures prepared by thermobaric treatment of fullerite. Russian Chemical Bulletin 2008, 57 (9), 1975–1980.

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Michael H. Check.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Check, M.H., Dudis, D.S., Ferguson, J.B. et al. Synthesis of Fulleride Thin Films with Ultra-low Thermal Conductivity.. MRS Online Proceedings Library 1329, 1027 (2011). https://doi.org/10.1557/opl.2011.1309

Download citation