Electrical Conductance of Single Oligothiophene Molecular Wires: Temperature Effect


We investigated temperature dependence of the electrical conductance of single oligothiophene molecular wires with the length of 2.2 nm (5-mer), 5.6 nm (14-mer) and 6.7 nm (17-mer) by using the scanning tunneling microscopy break junction method. Results show that the dominant charge carrier transport for 5-mer molecule is tunneling while for 17-mer molecule is hopping. The carrier transport mechanism of 14-mer are tunneling transport (T ≤ 350 K) and hopping transport (T > 350 K) indicating that hopping and tunnelling transport are competitive process in the molecular junction.

This is a preview of subscription content, access via your institution.


  1. 1

    A. Aviram and M. Ratner, Chem. Phys. Lett. 29, 277 (1974).

    CAS  Article  Google Scholar 

  2. 2

    J. M. Beebe, B. S. Kim, J. W. Gadzuk, C. D. Frisbie, and J. G. Kushmerick, Phys. Rev. Lett. 97, 0268801 (2006).

    Article  Google Scholar 

  3. 3

    A. Salomon, D. Cahen, S. Lindsay, J. Tomfohr, V.B. Engelkes and C.D. Frisbie, Adv. Mater. 15, 1881 (2003).

    CAS  Article  Google Scholar 

  4. 4

    N. J. Tao, Nat. Nanotech. 1, 173 (2006).

    CAS  Article  Google Scholar 

  5. 5

    F. Chen, X. Li, J. Hihath, Z. Huang, and N. J. Tao, J. Am. Chem. Soc. 128, 15874 (2006).

    CAS  Article  Google Scholar 

  6. 6

    E. Sim, J. Phys. Chem. B 109, 11829 (2005).

    CAS  Article  Google Scholar 

  7. 7

    C. Joachim and M. A. Ratner, Proc. Natl. Acad. Sci. U.S.A., 102, 8801–8808 (2005).

    CAS  Article  Google Scholar 

  8. 8

    R. Yamada, H. Kumazawa, T. Noutoshi, S. Tanaka, and H. Tada, Nano. Lett. 8, 1237 (2008).

    CAS  Article  Google Scholar 

  9. 9

    R. Yamada, H. Kumazawa, S. Tanaka, and H. Tada, Appl. Phys. Express. 2, 025002 (2009).

    Article  Google Scholar 

  10. 10

    S. H. Choi, B.-S. Kim, and C. D. Frisbie, Science, 320 1482 (2008)

    CAS  Article  Google Scholar 

  11. 11

    S. Y. Quek, H. J. Choi, S. G. Louie, and J. B. Neaton, Nano Letters, 9 3949–3953 (2009).

    CAS  Article  Google Scholar 

  12. 12

    D. Segal, A. Nitzan, and W. B. Davis, J. Phys. Chem. B 104, 3817 (2000).

    CAS  Article  Google Scholar 

  13. 13

    S. Tanaka and Y. Yamashita, Synth. Met. 119, 67 (2001).

    CAS  Article  Google Scholar 

  14. 14

    S. Tanaka and Y. Yamashita, Trans. Mater. Res. Soc. Jpn. 26, 739 (2001).

    CAS  Google Scholar 

  15. 15

    S. Tanaka and Y. Yamashita, Synth. Met. 101, 532 (1999)

    CAS  Article  Google Scholar 

  16. 16

    J. W. Ciszek, M. P. Stewart, and J. M. Tour, J. Am. Chem. Soc. 126, 13172 (2004).

    CAS  Article  Google Scholar 

  17. 17

    Q. Lu, K. Liu, H Zhang, Z. Du, Z Wang and F. Wang, American Chemical Society, 3, (2009) 3861–386816.

    CAS  Google Scholar 

  18. 18

    L. Dreesen, C. Volcke, Y. Sartenaer, A. Peremans, P. A. Thiry, C. Humbert, J. Grugier, and J. Marchand-Brynaert, Surf. Sci. 600, 4052(2006).

    CAS  Article  Google Scholar 

  19. 19

    M. A. Ratner, B. Davis, M. Kemp, V. Mujica, A. Roitberg and S. Yaliraki, N.Y.Acad. Sci. II. 852, 22 (1998).

    CAS  Article  Google Scholar 

  20. 20

    W. Haiss, H. V. Zalinge, D. Bethell, J. Ulstrup, D. J. Schiffrin and R. J. Nichols, Faraday Discuss, 131, 253 (2006).

    CAS  Article  Google Scholar 

  21. 21

    S. H. Choi, C. Risko, M. C. R. Delgado, B. S. Kim, J. L. Bredas, and C. D. Frisbie, J. Am. Chem. Soc. 132, 4358–4368 (2010).

    CAS  Article  Google Scholar 

Download references

Author information



Rights and permissions

Reprints and Permissions

About this article

Cite this article

Lee, S.K., Yamada, R., Tanaka, S. et al. Electrical Conductance of Single Oligothiophene Molecular Wires: Temperature Effect. MRS Online Proceedings Library 1286, 1101 (2010). https://doi.org/10.1557/opl.2011.12

Download citation