Growth of Ultra-High Density 3C-SiC Nanowires via Single Source CVD

Abstract

Silicon carbide (SiC) nanostructures attract interest due to their applications in optoelectronic devices, sensors, and high-power/high temperature electronics. The synthesis of SiC nanowires by chemical vapor deposition using hexamethyldisilane (HMDS) as a source material on SiO2/Si substrate has been investigated. Various catalyst materials, including iron (film and nanoparticles), nickel (film and nanoparticles), and cobalt nanoparticles have been used. The growth runs have been carried out at temperatures between 900 and 1100°C under H2 as carrier gas. 3C-SiC nanowires have successfully been grown at even lower temperatures despite the lower efficiency of source decomposition at low temperatures. The SiC nanowire diameters are in the range of 8 nm to 60 nm, as determined by transmission electron microscopy (TEM). In general, the efficiency of nanowire growth has increased with temperature except the growth on Ni film, which has occasionally resulted in SiC flowers. Higher nanowire density at high temperatures can be attributed to more efficient decomposition of the source at higher temperatures. Further, optical properties of the nanowires have been studied by Fourier transform infrared spectroscopy (FTIR). The fabricated nanowires have also been characterized by scanning electron microscopy (SEM), atomic force microscopy (AFM), and x-ray diffraction (XRD).

This is a preview of subscription content, access via your institution.

References

  1. 1

    J.B. Casady and R.W. Johnson, Solid State Electron. 39, 1409 (1996).

    Article  Google Scholar 

  2. 2

    E.W. Wong, G.W. Meng, and C.M. Lieber, Science 277, 1971 (1997).

    CAS  Article  Google Scholar 

  3. 3

    C.H. Liang, G.W. Meng, L.D. Zhang, Y.C. Wu, and Z. Cui, Chem. Phys. Lett. 329, 323 (2000).

    CAS  Article  Google Scholar 

  4. 4

    K. Shenai, R.S. Scott, and B.J. Baliga, IEEE Trans. Electron Devices 36, 1811 (1989).

    CAS  Article  Google Scholar 

  5. 5

    D.W. Kim, Y.J. Choi, K.J. Choi, J.G. Park, S.M. Pimenov, V.D. Frolov, N.P. Abanshin, B.I. Gorfinkel, N.M. Rossukanyi, and A.I. Rukovishnikov, Nanotechnol. 19, 225706 (2008).

    Article  Google Scholar 

  6. 6

    M. Ali, V. Cimalla, V. Lebecev, T. Stauden, G. Ecke, V. Tilak, P. Sandvik, and O. Ambacher, Sens. Actuator B 122, 182 (2007).

    CAS  Article  Google Scholar 

  7. 7

    G. Li, W.L. Burggraf, R.J. Shoemaker, D. Eastwood, and E.A. Stiegman, Appl. Phys. Lett. 76, 3373 (2000).

    CAS  Article  Google Scholar 

  8. 8

    Q.G. Fu, H.J. Li, X.H. Shi, K.Z. Li, J. Wei, and Z.B. Hu, Mater. Chem. Phys. 100, 108 (2006).

    CAS  Article  Google Scholar 

  9. 9

    S.K. Panda, J. Sengupta, and C. Jacob, J. Nanosci. Nanotechnol. 10, 3046 (2010).

    CAS  Article  Google Scholar 

  10. 10

    G.W. Meng, L.D. Zhang, C.M. Mo, S.Y. Zhang, Y. Qin, S.P. Feng, and H.J. Li, J. Mater. Res. 13, 2533 (1998).

    CAS  Article  Google Scholar 

  11. 11

    B.C. Kang, S.B. Lee, and J.H. Boo, Thin Solid Films 215, 464 (2004).

    Google Scholar 

  12. 12

    Y. Baek, Y.H. Ryu, and K. Yong, Mater. Sci. Eng. C 26, 805 (2006).

    CAS  Article  Google Scholar 

  13. 13

    G.W. Meng, L.D. Zhang, Y. Qin, C.M. Mo, and F. Philipp, Nanostruct. Mater. 12, 1003 (1999).

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Teker, K., Oxenham, J.A. Growth of Ultra-High Density 3C-SiC Nanowires via Single Source CVD. MRS Online Proceedings Library 1350, 306 (2011). https://doi.org/10.1557/opl.2011.1207

Download citation