Large-Scale Manufacturing of Nanoscale Multilayered Hard Coatings Deposited by Cathodic Arc/Unbalanced Magnetron Sputtering

Abstract

Nanoscale multilayered (superlattice) hard coatings can be manufactured in a plastic hardness range (HP) between 25 GPa and 55 GPa by a combination of cathodic arc evaporation and unbalanced magnetron sputtering (arc bond sputter technology). Using large-scale industrial physical vapor deposition (PVD) equipment and a sufficiently high pumping speed, multilayered coatings can be deposited by simultaneously operating cathodes without special shutter and shielding facilities in a common reactive-gas atmosphere. The efficiency of the process is in many cases identical to that of TiN and CrN.Temperature-resistant, wear-resistant, and corrosion-resistant coatings of various compositions have been produced under industrial conditions. So far, the main applications concentrate on metal-forming and on cutting die steel, Inconel, stainless steel, and titanium. Applications have also been found in the chemical, textile, medical, and automotive industries.

This is a preview of subscription content, access via your institution.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. 1.

    U. Helmersson, S. Todorova, S.A. Barnett, J.-E. Sundgren, L.C. Markert, and J.E. Greene, J. Appl. Phys. 62 (1987) p. 481.

    CAS  Article  Google Scholar 

  2. 2.

    X. Chu, M.S. Wong, W.D. Sproul, S.L. Rohde, and S.A. Barnett, J. Vac. Sci. Technol., A 10 (1992) p. 1604.

    CAS  Article  Google Scholar 

  3. 3.

    P. Yashar, S.A. Barnett, J. Rechner, and W.D. Sproul, J. Vac. Sci. Technol., A 16 (5) (1998) p. 2913.

    CAS  Article  Google Scholar 

  4. 4.

    P.C. Yashar and W.D. Sproul, Vacuum 55 (1999) p. 179.

    CAS  Article  Google Scholar 

  5. 5.

    L.A. Donohue, W.-D. Münz, D.B. Lewis, J. Cawley, T. Hurkmans, T. Trinh, I. Petrov, and J.E. Greene, Surf. Coat. Technol. 93 (1997) p. 69.

    CAS  Article  Google Scholar 

  6. 6.

    W.-D. Münz, D.B. Lewis, P.Eh. Hovsepian, C. Schönjahn, A.P. Ehiasarian, and I.J. Smith, Surf. Eng. 17 (1) (2001) p. 15.

    Article  Google Scholar 

  7. 7.

    M. Setoyama, A. Nakayama, M. Tanaka, N. Kitagawa, and T. Nomura, Surf. Coat. Technol. 86/87 (1996) p. 225.

    Article  Google Scholar 

  8. 8.

    W.-D. Münz, D. Schulze, and F.J.M. Hauzer, Surf. Coat. Technol. 50 (1992) p. 169.

    Article  Google Scholar 

  9. 9.

    L.A. Donohue, I.J. Smith, W.-D. Münz, I. Petrov, and J.E. Greene, Surf. Coat. Technol. 94/95 (1997) p. 226.

    Article  Google Scholar 

  10. 10.

    M.I. Lembke, D.B. Lewis, W.-D. Münz, and J.M. Titchmarsh, Surf. Eng. 17 (2) (2001) p. 153.

    CAS  Article  Google Scholar 

  11. 11.

    S. Yang and D.G. Teer, Surf. Coat. Technol. 131 (2000) p. 412.

    CAS  Article  Google Scholar 

  12. 12.

    C. Schönjahn, D.B. Lewis, W.-D. Münz, and I. Petrov, Surf. Eng. 16 (2) (2000) p. 176.

    Article  Google Scholar 

  13. 13.

    C. Schönjahn, H. Paritong, W.-D. Münz, R.D. Twesten, and I. Petrov, J. Vac. Sci. Technol., A 19 (4) (2001) p. 1392.

    Article  Google Scholar 

  14. 14.

    Fokker B.V. (unpublished).

  15. 15.

    C. Leyens, M. Peters, P.Eh. Hovsepian, D.B. Lewis, Q. Luo, and W.-D. Münz, Surf. Coat. Technol. 155 (2002) p. 103.

    CAS  Article  Google Scholar 

  16. 16.

    D.K. Aspinwall, R.C. Dewes, E.-G. Ng, C. Sage, and S.L. Soo, in Proc. 5th Int. Conf. on Behavior of Materials in Machining (2000) p. 45.

    Google Scholar 

  17. 17.

    G. Nayal, D.B. Lewis, M. Lembke, W.-D. Münz, and J.E. Cockrem, Surf. Coat. Technol. 111 (1999) p. 148.

    CAS  Article  Google Scholar 

  18. 19.

    A.P. Ehiasarian, W.-D. Münz, L. Hultman, U. Helmersson, and I. Petrov, Surf. Coat. Technol. 163–164 (2003) p. 267.

    Article  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Münz, W.D. Large-Scale Manufacturing of Nanoscale Multilayered Hard Coatings Deposited by Cathodic Arc/Unbalanced Magnetron Sputtering. MRS Bulletin 28, 173–179 (2003). https://doi.org/10.1557/mrs2003.58

Download citation

Keywords

  • anticorrosion properties
  • cathodic arc/unbalanced magnetron (CA/UBM) sputtering
  • friction reduction
  • nanoscale multilayers
  • physical vapor deposition (PVD)
  • superhard coating materials
  • superlattices
  • wear resistance