Metallic Hydrides I: Hydrogen Storage and Other Gas- Phase Applications


A brief survey is given of the various classes of metal alloys and compounds that are suitable for hydrogen-storage and energy-conversion applications. Comparisons are made of relevant properties including hydrogen absorption and desorption pressures, total and reversible hydrogen-storage capacity, reaction-rate kinetics, initial activation requirements, susceptibility to contamination, and durability during long-term thermal cycling. Selected applications are hydrogen storage as a fuel, gas separation and purification, thermal switches, and sorption cryocoolers.

This is a preview of subscription content, access via your institution.


  1. 1.

    J.J. Reilly, Z. Phys. Chem. NF 117 (1979) p. 155.

    CAS  Article  Google Scholar 

  2. 2.

    P. Dantzer, in Hydrogen in Metals III: Topics in Applied Physics, Vol. 73, edited by H. Wipf (Springer, Berlin, 1997) p. 279.

    CAS  Article  Google Scholar 

  3. 3.

    R.B. Schwarz, MRS Bull. 24 (11) (1999) p. 40.

    CAS  Article  Google Scholar 

  4. 4.

    S. Orimo and H. Fujii, Appl. Phys. A 72 (2001) p. 167.

    CAS  Article  Google Scholar 

  5. 5.

    S. Suda and G. Sandrock, Z. Phys. Chem. 183 (1994) p. 149.

    CAS  Article  Google Scholar 

  6. 6.

    G. Sandrock, J. Alloys Compd. 293–295 (1999) p. 877; IEA/DOE/SNL Hydride Databases, (accessed July 2002).

    Article  Google Scholar 

  7. 7.

    L. Schlapbach, in Hydrogen in Intermetallic Compounds II: Topics in Applied Physics, Vol. 67, edited by L. Schlapbach (Springer, Berlin, 1992) p. 15.

    CAS  Google Scholar 

  8. 8.

    D. Richter, R. Hempelmann, and R.C. Bowman, Jr, in Hydrogen in Intermetallic Compounds II: Topics in Applied Physics, Vol. 67, edited by L. Schlapbach (Springer, Berlin, 1992) p. 97.

    CAS  Google Scholar 

  9. 9.

    P. Spatz, H.A. Aebischer, A. Krozer, and L. Schlapbach, Z. Phys. Chem. 181 (1993) p. 393.

    CAS  Article  Google Scholar 

  10. 10.

    R.C. Bowman, Jr, C.H. Luo, C.C. Ahn, C.K. Witham, and B. Fultz, J. Alloys Compd. 217 (1995) p. 185.

    CAS  Article  Google Scholar 

  11. 11.

    G. Friedlmeier, A. Manthey, M. Wanner, and M. Groll, J. Alloys Compd. 231 (1995) p. 880.

    CAS  Article  Google Scholar 

  12. 12.

    M. Wanner, G. Hoffmann, and M. Groll, in Hydrogen Power: Theoretical and Engineering Solutions, edited by T.O. Saetre (Kluwer Academic Publishers/Academic Press, Dordrecht, 1998) p. 257.

  13. 13.

    H.-H. Lee and J.-Y. Lee, J. Alloys Compd. 202 (1993) p. 23.

    CAS  Article  Google Scholar 

  14. 14.

    S. Luo, T.B. Flanagan, and P.H.L Notten, J. Alloys Compd. 239 (1996) p. 214.

    CAS  Article  Google Scholar 

  15. 15.

    W. Luo, J.D. Clewley, T.B. Flanagan, and W.A. Oates, J. Alloys Compd. 185 (1992) p. 321.

    CAS  Article  Google Scholar 

  16. 16.

    M. Bououdina, H. Enoki, and E. Akiba, J. Alloys Compd. 281 (1998) p. 290.

    CAS  Article  Google Scholar 

  17. 17.

    D. Sun, J.M. Joubert, M. Latroche, and A. Percheron-Guégan, J. Alloys Compd. 239 (1996) p. 193.

    CAS  Article  Google Scholar 

  18. 18.

    M. Bououdina, J.-L. Soubeyroux, and D. Fruchart, J. Alloys Compd. 327 (2001) p. 185.

    CAS  Article  Google Scholar 

  19. 19.

    T. Sakai, M. Matsuoka, and C. Iwakura, in Handbook on the Physics and Chemistry of Rare Earths, Vol. 21, edited by K.A. Gschneidner Jr and L. Eyring (Elsevier, Amsterdam, 1995) p. 133.

    CAS  Article  Google Scholar 

  20. 20.

    P.H.L Notten, in Interstitial Metallic Alloys, NATO Ser. Vol. 281, edited by F. Grandjean, G. Long, and K.H.J Buschow (Kluwer Academic Publishers, London, 1995) p. 151.

    CAS  Article  Google Scholar 

  21. 21.

    B. Fultz, C.K. Witham, and T.J. Udovic, J. Alloys Compd. 335 (2002) p. 165.

    CAS  Article  Google Scholar 

  22. 22.

    B.V. Ratnakumar, C. Witham, R.C. Bowman, Jr, A. Hightower, and B. Fultz, J. Electrochem. Soc. 143 (1996) p. 2578.

    CAS  Article  Google Scholar 

  23. 23.

    J. Toepler and K. Feucht, Z. Phys. Chem. NF 164 (1989) p. 1451.

    Article  Google Scholar 

  24. 24.

    A.J. Appleby, Sci. Am. 281 (1) (1999) p. 74.

    CAS  Article  Google Scholar 

  25. 25.

    T. Motyka, W.A. Summers, and L.K. Heung, “Industrial Fuel-Cell Vehicles with Metal Hydride Storage,” in Proc. 11th Canadian Hydrogen Conf. [CD-ROM] (Canadian Hydrogen Association, Toronto, 2001) Paper No. 8C-#10.

    Google Scholar 

  26. 26.

    E. Willers and M. Groll, Int. J. Refrig. 22 (1999) p. 47.

    CAS  Article  Google Scholar 

  27. 27.

    M. Prina, J.G. Kulleck, and R.C. Bowman, Jr, J. Alloys Compd. 330–332 (2002) p. 886.

    Article  Google Scholar 

  28. 28.

    S. Bard, P. Karlmann, J. Rodriguez, J. Wu, L. Wade, P. Cowgill, and K.M. Russ, in Cryocoolers, Vol. 9, edited by R.G. Ross Jr (Plenum Publishers, New York, 1997) p. 567.

    Article  Google Scholar 

  29. 29.

    L.A. Wade, P. Bhandari, R.C. Bowman, Jr, C. Paine, G. Morgante, C.A. Lindensmith, D. Crumb, M. Prina, R. Sugimura, and D. Rapp, in Advances in Cryogenic Engineering, Vol. 45, Shu Q.-S., chief editor (Kluwer Academic/Plenum Publishers, New York, 2000) p. 499.

    CAS  Google Scholar 

Download references


Rights and permissions

Reprints and Permissions

About this article

Cite this article

Bowman, R.C., Fultz, B. Metallic Hydrides I: Hydrogen Storage and Other Gas- Phase Applications. MRS Bulletin 27, 688–693 (2002).

Download citation


  • hydrogen storage
  • metal hydrides
  • neutron scattering