Skip to main content
Log in

Metal–organic frameworks for chemical conversion of carbon dioxide

  • Review
  • Published:
MRS Energy & Sustainability Aims and scope Submit manuscript

Abstract

Role of MOFs in CO2 chemical conversion; Photocatalytic and electrocatalytic CO2 reduction; Role of linkers and metals in CO2 chemical conversion; and MOF composites and films in CO2 conversion.

In this review, we analyze the emerging field of metal–organic frameworks (MOFs) as catalysts for chemical conversion of CO2, with examples ranging from heterogeneous CO2 organic transformation to heterogeneous CO2 hydrogenation, from photocatalytic to electrocatalytic CO2 reduction. We also discuss the role of MOF composites and films in CO2 transformation. Our goal is to have an instrument useful to identify the best MOFs for CO2 conversion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.

Similar content being viewed by others

References

  1. Chu S.: Carbon capture and sequestration. Science 325, 1599 (2009).

    CAS  Google Scholar 

  2. Lu A.H. and Hao G.P.: Porous materials for carbon dioxide capture. Annu. Rep. Prog. Chem. A 109, 484 (2013).

    CAS  Google Scholar 

  3. Tu W., Zhou Y., and Zou Z.: Photocatalytic conversion of CO2 into renewable hydrocarbon fuels: State-of-the-art accomplishment, challenges, and prospects. Adv. Mater. 26, 4607 (2014).

    CAS  Google Scholar 

  4. Qiao J., Liu Y., Hong F., and Zhang J.: A review of catalysts for the electroreduction of carbon dioxide to produce low-carbon fuels. Chem. Soc. Rev. 43, 631 (2014).

    CAS  Google Scholar 

  5. Rahmani F., Haghighi M., Estifaee P., and Rahimpour M.R.: A comparative study of two different membranes applied for auto-thermal methanol synthesis process. J. Nat. Gas Sci. Eng. 7, 60 (2012).

    CAS  Google Scholar 

  6. Yasuda H., He L.N., Sakakura T., and Hu C.: Efficient synthesis of cyclic carbonate from carbon dioxide catalyzed by polyoxometalate: The remarkable effects of metal substitution. J. Catal. 233, 119 (2005).

    CAS  Google Scholar 

  7. Hudson M.R., Queen W.L., Mason J.A., Fickel D.W., Lobo R.F., and Brown C.M.: Unconventional, highly selective CO2 adsorption in zeolite SSZ-13. J. Am. Chem. Soc. 134, 1970 (2012).

    CAS  Google Scholar 

  8. Zhang Y., Li B., Williams K., Gao W.Y., and Ma S.: A new microporous carbon material synthesized via thermolysis of a porous aromatic framework embedded with an extra carbon source for low-pressure CO2 uptake. Chem. Commun. 49, 10269 (2013).

    CAS  Google Scholar 

  9. Chughtai A.H., Ahmad N., Younus H.A., Laypkov A., and Verpoort F.: Metal-organic frameworks: Versatile heterogeneous catalysts for efficient catalytic organic transformations. Chem. Soc. Rev. 44, 6804 (2015).

    CAS  Google Scholar 

  10. Gascon J., Corma A., Kapteijn F., Llabrés I., and Xamena F.X.: Metal organic framework catalysis: Quo vadis? ACS Catal. 4, 361 (2014).

    CAS  Google Scholar 

  11. Nguyen P.T.K., Nguyen H.T.D., Nguyen H.N., Trickett C.A., Ton Q.T., Gutiérrez-Puebla E., Monge M.A., Cordova K.E., and Gándara F.: New metal-organic frameworks for chemical fixation of CO2. ACS Appl. Mater. Interfaces 10, 733 (2018).

    CAS  Google Scholar 

  12. Chen F., Dong T., Xu T., Li X., and Hu C.: Direct synthesis of cyclic carbonates from olefins and CO2 catalyzed by a MoO2(acac)2-quaternary ammonium salt system. Green Chem. 13, 2518 (2011).

    CAS  Google Scholar 

  13. Han Q., He C., Zhao M., Qi B., Niu J., and Duan C.: Engineering chiral polyoxometalate hybrid metal-organic frameworks for asymmetric dihydroxylation of olefins. J. Am. Chem. Soc. 135, 10186 (2013).

    CAS  Google Scholar 

  14. Zalomaeva O.V., Chibiryaev A.M., Kovalenko K.A., Kholdeeva O.A., Balzhinimaev B.S., and Fedin V.P.: Cyclic carbonates synthesis from epoxides and CO2 over metal-organic framework Cr-MIL-101. J. Catal. 298, 179 (2013).

    CAS  Google Scholar 

  15. Cho H.Y., Yang D.A., Kim J., Jeong S.Y., and Ahn W.S.: CO2 adsorption and catalytic application of Co-MOF-74 synthesized by microwave heating. Catal. Today 185, 35 (2012).

    CAS  Google Scholar 

  16. Guillerm V., Weseliński ŁJ, Belmabkhout Y., Cairns A.J., D'Elia V., Wojtas Ł, Adil K., and Eddaoudi M.: Discovery and introduction of a (3,18)-connected net as an ideal blueprint for the design of metal-organic frameworks. Nat. Chem. 6, 673 (2014).

    CAS  Google Scholar 

  17. Beyzavi M.H., Klet R.C., Tussupbayev S., Borycz J., Vermeulen N.A., Cramer C.J., Stoddart J.F., Hupp J.T., and Farha O.K.: A hafnium-based metal-organic framework as an efficient and multifunctional catalyst for facile CO2 fixation and regioselective and enantioretentive epoxide activation. J. Am. Chem. Soc. 136, 15861 (2014).

    CAS  Google Scholar 

  18. Zou R., Li P.-Z., Zeng Y.-F., Liu J., Zhao R., Duan H., Luo Z., Wang J.-G., Zou R., and Zhao Y.: Bimetallic metal-organic frameworks: Probing the lewis acid site for CO2 conversion. Small 12, 2334 (2016).

    CAS  Google Scholar 

  19. Wang S., Yang L., He G., Shi B., Li Y., Wu H., Zhang R., Nunes S., and Jiang Z.: Two-dimensional nanochannel membranes for molecular and ionic separations. Chem. Soc. Rev. 49, 1071 (2020).

    CAS  Google Scholar 

  20. Gao W.Y., Chen Y., Niu Y., Williams K., Cash L., Perez P.J., Wojtas L., Cai J., Chen Y.S., and Ma S.: Crystal engineering of an nbo topology metal-organic framework for chemical fixation of CO2 under ambient conditions. Angew. Chem. Int. Ed. 53, 2615 (2014).

    CAS  Google Scholar 

  21. Ma D., Li B., Liu K., Zhang X., Zou W., Yang Y., Li G., Shi Z., and Feng S.: Bifunctional MOF heterogeneous catalysts based on the synergy of dual functional sites for efficient conversion of CO2 under mild and co-catalyst free conditions. J. Mater. Chem. A 3, 23136 (2015).

    CAS  Google Scholar 

  22. Zhou Z., He C., Xiu J., Yang L., and Duan C.: Metal-organic polymers containing discrete single-walled nanotube as a heterogeneous catalyst for the cycloaddition of carbon dioxide to epoxides. J. Am. Chem. Soc. 137, 15066 (2015).

    CAS  Google Scholar 

  23. Gao W.Y., Chen Y., Niu Y., Williams K., Cash L., Perez P.J., Wojtas L., Cai J., Chen Y.S., and Ma S.: Crystal engineering of an nbo topology metal-organic framework for chemical fixation of CO2 under ambient conditions. Angew. Chem. Int. Ed. 53, 2615 (2014).

    CAS  Google Scholar 

  24. Kathalikkattil A.C., Roshan R., Tharun J., Babu R., Jeong G.S., Kim D.W., Cho S.J., and Park D.W.: A sustainable protocol for the facile synthesis of zinc-glutamate MOF: An efficient catalyst for room temperature CO2 fixation reactions under wet conditions. Chem. Commun. 52, 280 (2016).

    CAS  Google Scholar 

  25. Rachuri Y., Kurisingal J.F., Chitumalla R.K., Vuppala S., Gu Y., Jang J., Choe Y., Suresh E., and Park D.W.: Adenine-based Zn(II)/Cd(II) metal-organic frameworks as efficient heterogeneous catalysts for facile CO2 fixation into cyclic carbonates: A DFT-supported study of the reaction mechanism. Inorg. Chem. 58, 11389 (2019).

    CAS  Google Scholar 

  26. Miralda C.M., MacIas E.E., Zhu M., Ratnasamy P., and Carreon M.A.: Zeolitic imidazole framework-8 catalysts in the conversion of CO2 to chloropropene carbonate. ACS Catal. 2, 180 (2012).

    CAS  Google Scholar 

  27. Kim Y.J. and Park D.W.: Functionalized IRMOF-3: An efficient heterogeneous catalyst for the cycloaddition of allyl glycidyl ether and CO2. J. Nanosci. Nanotechnol. 13, 2307 (2013).

    CAS  Google Scholar 

  28. Song J., Zhang Z., Hu S., Wu T., Jiang T., and Han B.: MOF-5/n-Bu4NBr: An efficient catalyst system for the synthesis of cyclic carbonates from epoxides and CO2 under mild conditions. Green Chem. 11, 1031 (2009).

    CAS  Google Scholar 

  29. Zhang L., Yuan S., Feng L., Guo B., Qin J.-S., Xu B., Lollar C., Sun D., and Zhou H.-C.: Pore-environment engineering with multiple metal sites in rare-earth porphyrinic metal-organic frameworks. Angew. Chem. Int. Ed. 57, 5095 (2018).

    CAS  Google Scholar 

  30. Ji X.H., Zhu N.N., Ma J.G., and Cheng P.: Conversion of CO2 into cyclic carbonates by a Co(ii) metal-organic framework and the improvement of catalytic activity: Via nanocrystallization. Dalt. Trans. 47, 1768 (2018).

    CAS  Google Scholar 

  31. Feng D., Chung W.C., Wei Z., Gu Z.Y., Jiang H.L., Chen Y.P., Darensbourg D.J., and Zhou H.C.: Construction of ultrastable porphyrin Zr metal-organic frameworks through linker elimination. J. Am. Chem. Soc. 135, 17105 (2013).

    CAS  Google Scholar 

  32. Gao W.-Y., Chen Y., Niu Y., Williams K., Cash L., Perez P.J., Wojtas L., Cai J., Chen Y.-S., and Ma S.: Crystal engineering of an nbo topology metal-organic framework for chemical fixation of CO2 under ambient conditions. Angew. Chem. Int. Ed. 53, 2615 (2014).

    CAS  Google Scholar 

  33. Kleist W., Jutz F., Maciejewski M., and Baiker A.: Mixed-linker metal-organic frameworks as catalysts for the synthesis of propylene carbonate from propylene oxide and CO2. Eur. J. Inorg. Chem. 2009, 3552 (2009).

    Google Scholar 

  34. Lescouet T., Chizallet C., and Farrusseng D.: The origin of the activity of amine-functionalized metal-organic frameworks in the catalytic synthesis of cyclic carbonates from epoxide and CO2. ChemCatChem 4, 1725 (2012).

    CAS  Google Scholar 

  35. Kim J., Kim S.N., Jang H.G., Seo G., and Ahn W.S.: CO2 cycloaddition of styrene oxide over MOF catalysts. Appl. Catal. A Gen. 453, 175 (2013).

    CAS  Google Scholar 

  36. Beyzavi M.H., Stephenson C.J., Liu Y., Karagiaridi O., Hupp J.T., and Farha O.K.: Metal-organic framework-based catalysts: Chemical fixation of CO2 with epoxides leading to cyclic organic carbonates. Front. Energy Res. 3, 63 (2015).

    Google Scholar 

  37. Vismara R., Tuci G., Mosca N., Domasevitch K.V., Di Nicola C., Pettinari C., Giambastiani G., Galli S., and Rossin A.: Amino-decorated bis(pyrazolate) metal–organic frameworks for carbon dioxide capture and green conversion into cyclic carbonates. Inorg. Chem. Front. 6, 533 (2019).

    CAS  Google Scholar 

  38. Müller P., Bucior B., Tuci G., Luconi L., Getzschmann J., Kaskel S., Snurr R.Q., Giambastiani G., and Rossin A.: Computational screening, synthesis and testing of metal-organic frameworks with a bithiazole linker for carbon dioxide capture and its green conversion into cyclic carbonates. Mol. Syst. Des. Eng. 4, 1000 (2019).

    Google Scholar 

  39. Babu R., Kathalikkattil A.C., Roshan R., Tharun J., Kim D.W., and Park D.W.: Dual-porous metal organic framework for room temperature CO2 fixation via cyclic carbonate synthesis. Green Chem. 18, 232 (2015).

    Google Scholar 

  40. Cao C.S., Shi Y., Xu H., and Zhao B.: A multifunctional MOF as a recyclable catalyst for the fixation of CO2 with aziridines or epoxides and as a luminescent probe of Cr(VI). Dalt. Trans. 47, 4545 (2018).

    CAS  Google Scholar 

  41. Kumar S., Verma G., Gao W.-Y., Niu Z., Wojtas L., and Ma S.: Anionic metal-organic framework for selective dye removal and CO2 fixation. Eur. J. Inorg. Chem. 2016, 4373 (2016).

    CAS  Google Scholar 

  42. Li X.Y., Ma L.N., Liu Y., Hou L., Wang Y.Y., and Zhu Z.: Honeycomb metal-organic framework with lewis acidic and basic bifunctional sites: Selective adsorption and CO2 catalytic fixation. ACS Appl. Mater. Interfaces 10, 10965 (2018).

    CAS  Google Scholar 

  43. He H., Sun Q., Gao W., Perman J.A., Sun F., Zhu G., Aguila B., Forrest K., Space B., and Ma S.: A stable metal-organic framework featuring a local buffer environment for carbon dioxide fixation. Angew. Chem. Int. Ed. 57, 4657 (2018).

    CAS  Google Scholar 

  44. Ansari S.N., Kumar P., Gupta A.K., Mathur P., and Mobin S.M.: Catalytic CO2 fixation over a robust lactam-functionalized Cu(II) metal organic framework. Inorg. Chem. 58, 9723 (2019).

    CAS  Google Scholar 

  45. Liang L., Liu C., Jiang F., Chen Q., Zhang L., Xue H., Jiang H.L., Qian J., Yuan D., and Hong M.: Carbon dioxide capture and conversion by an acid-base resistant metal-organic framework. Nat. Commun. 8, 1 (2017).

    Google Scholar 

  46. Zhou X., Zhang Y., Yang X., Zhao L., and Wang G.: Functionalized IRMOF-3 as efficient heterogeneous catalyst for the synthesis of cyclic carbonates. J. Mol. Catal. A Chem. 361–362, 12 (2012).

    Google Scholar 

  47. Tharun J., Bhin K.M., Roshan R., Kim D.W., Kathalikkattil A.C., Babu R., Ahn H.Y., Won Y.S., and Park D.W.: Ionic liquid tethered post functionalized ZIF-90 framework for the cycloaddition of propylene oxide and CO2. Green Chem. 18, 2479 (2016).

    CAS  Google Scholar 

  48. Kaneti Y.V., Dutta S., Hossain M.S.A., Shiddiky M.J.A., Tung K.L., Shieh F.K., Tsung C.K., Wu K.C.W., and Yamauchi Y.: Strategies for improving the functionality of zeolitic imidazolate frameworks: Tailoring nanoarchitectures for functional applications. Adv. Mater. 29, 1700213 (2017).

    Google Scholar 

  49. Bhin K.M., Tharun J., Roshan K.R., Kim D.W., Chung Y., and Park D.W.: Catalytic performance of zeolitic imidazolate framework ZIF-95 for the solventless synthesis of cyclic carbonates from CO2 and epoxides. J. CO2 Util. 17, 112 (2017).

    CAS  Google Scholar 

  50. Liang J., Xie Y.Q., Wang X.S., Wang Q., Liu T.T., Huang Y.B., and Cao R.: An imidazolium-functionalized mesoporous cationic metal-organic framework for cooperative CO2 fixation into cyclic carbonate. Chem. Commun. 54, 342 (2018).

    CAS  Google Scholar 

  51. Manjolinho F., Arndt M., Gooßen K., and Gooßen L.J.: Catalytic C-H carboxylation of terminal alkynes with carbon dioxide. ACS Catal. 2, 2014 (2012).

    CAS  Google Scholar 

  52. Xiong G., Yu B., Dong J., Shi Y., Zhao B., and He L.N.: Cluster-based MOFs with accelerated chemical conversion of CO2 through C-C bond formation. Chem. Commun. 53, 6013 (2017).

    CAS  Google Scholar 

  53. Zhang Y., Li B., Krishna R., Wu Z., Ma D., Shi Z., Pham T., Forrest K., Space B., and Ma S.: Highly selective adsorption of ethylene over ethane in a MOF featuring the combination of open metal site and π-complexation. Chem. Commun. 51, 2714 (2015).

    CAS  Google Scholar 

  54. Li B., Zhang Y., Krishna R., Yao K., Han Y., Wu Z., Ma D., Shi Z., Pham T., Space B., Liu J., Thallapally P.K., Liu J., Chrzanowski M., and Ma S.: Introduction of π-complexation into porous aromatic framework for highly selective adsorption of ethylene over ethane. J. Am. Chem. Soc. 136, 8654 (2014).

    CAS  Google Scholar 

  55. Zhou Z., He C., Yang L., Wang Y., Liu T., and Duan C.: Alkyne activation by a porous silver coordination polymer for heterogeneous catalysis of carbon dioxide cycloaddition. ACS Catal. 7, 2248 (2017).

    CAS  Google Scholar 

  56. Zhang G., Yang H., and Fei H.: Unusual missing linkers in an organosulfonate-based primitive-cubic (pcu)-type metal-organic framework for CO2 capture and conversion under ambient conditions. ACS Catal. 8, 2519 (2018).

    CAS  Google Scholar 

  57. Liu X.H., Ma J.G., Niu Z., Yang G.M., and Cheng P.: An efficient nanoscale heterogeneous catalyst for the capture and conversion of carbon dioxide at ambient pressure. Angew. Chem. Int. Ed. 54, 988 (2015).

    CAS  Google Scholar 

  58. Molla R.A., Ghosh K., Banerjee B., Iqubal M.A., Kundu S.K., Islam S.M., and Bhaumik A.: Silver nanoparticles embedded over porous metal organic frameworks for carbon dioxide fixation via carboxylation of terminal alkynes at ambient pressure. J. Colloid Interface Sci. 477, 220 (2016).

    CAS  Google Scholar 

  59. Gao W.Y., Wu H., Leng K., Sun Y., and Ma S.: Inserting CO2 into Aryl C-H bonds of metal-organic frameworks: CO2 Utilization for direct heterogeneous C-H activation. Angew. Chem. Int. Ed. 55, 5472 (2016).

    CAS  Google Scholar 

  60. McDonald T.M., Mason J.A., Kong X., Bloch E.D., Gygi D., Dani A., Crocellà V., Giordanino F., Odoh S.O., Drisdell W.S., Vlaisavljevich B., Dzubak A.L., Poloni R., Schnell S.K., Planas N., Lee K., Pascal T., Wan L.F., Prendergast D., Neaton J. B., Smit B., Kortright Gagliardi, L. Bordiga S. Reimer J.A., Long J.R.: Cooperative insertion of CO2 in diamine-appended metal-organic frameworks. Nature 519, 303 (2015).

    CAS  Google Scholar 

  61. Zhao D., Liu X.-H., Zhu C., Kang Y.-S., Wang P., Shi Z., Lu Y., and Sun W.-Y.: Efficient and reusable metal-organic framework catalysts for carboxylative cyclization of propargylamines with carbon dioxide. ChemCatChem 9, 4598 (2017).

    CAS  Google Scholar 

  62. Li W., Wang H., Jiang X., Zhu J., Liu Z., Guo X., and Song C.: A short review of recent advances in CO2 hydrogenation to hydrocarbons over heterogeneous catalysts. RSC Adv. 8, 7651 (2018).

    CAS  Google Scholar 

  63. Younas M., Loong Kong L., Bashir M.J.K., Nadeem H., Shehzad A., and Sethupathi S.: Recent advancements, fundamental challenges, and opportunities in catalytic methanation of CO2. Energy Fuels 30, 8815 (2016).

    CAS  Google Scholar 

  64. Zhen W., Li B., Lu G., and Ma J.: Enhancing catalytic activity and stability for CO2 methanation on Ni@MOF-5 via control of active species dispersion. Chem. Commun. 51, 1728 (2015).

    CAS  Google Scholar 

  65. Li W., Zhang A., Jiang X., Chen C., Liu Z., Song C., and Guo X.: Low temperature CO2 methanation: ZIF-67-derived Co-based porous carbon catalysts with controlled crystal morphology and size. ACS Sustain. Chem. Eng. 5, 7824 (2017).

    CAS  Google Scholar 

  66. Zhan G. and Zeng H.C.: ZIF-67-derived nanoreactors for controlling product selectivity in CO2 hydrogenation. ACS Catal. 7, 7509 (2017).

    CAS  Google Scholar 

  67. Lippi R., Howard S.C., Barron H., Easton C.D., Madsen I.C., Waddington L.J., Vogt C., Hill M.R., Sumby C.J., Doonan C.J., and Kennedy D.F.: Highly active catalyst for CO2 methanation derived from a metal organic framework template. J. Mater. Chem. A 5, 12990 (2017).

    CAS  Google Scholar 

  68. Zhang T., Manna K., and Lin W.: Metal-organic frameworks stabilize solution-inaccessible cobalt catalysts for highly efficient broad-scope organic transformations. J. Am. Chem. Soc. 138, 3241 (2016).

    CAS  Google Scholar 

  69. Yin Y., Hu B., Li X., Zhou X., Hong X., and Liu G.: Pd@zeolitic imidazolate framework-8 derived PdZn alloy catalysts for efficient hydrogenation of CO2 to methanol. Appl. Catal. B Environ. 234, 143 (2018).

    CAS  Google Scholar 

  70. Rungtaweevoranit B., Baek J., Araujo J.R., Archanjo B.S., Choi K.M., Yaghi O.M., and Somorjai G.A.: Copper nanocrystals encapsulated in Zr-based metal-organic frameworks for highly selective CO2 hydrogenation to methanol. Nano Lett. 16, 7645 (2016).

    CAS  Google Scholar 

  71. An B., Zhang J., Cheng K., Ji P., Wang C., and Lin W.: Confinement of ultrasmall Cu/ZnOx nanoparticles in metal-organic frameworks for selective methanol synthesis from catalytic hydrogenation of CO2. J. Am. Chem. Soc. 139, 3834 (2017).

    CAS  Google Scholar 

  72. An B., Li Z., Song Y., Zhang J., Zeng L., Wang C., and Lin W.: Cooperative copper centres in a metal–organic framework for selective conversion of CO2 to ethanol. Nat. Catal. 2, 709 (2019).

    CAS  Google Scholar 

  73. Liu J., Sun Y., Jiang X., Zhang A., Song C., and Guo X.: Pyrolyzing ZIF-8 to N-doped porous carbon facilitated by iron and potassium for CO2 hydrogenation to value-added hydrocarbons. J. CO2 Util. 25, 120 (2018).

    CAS  Google Scholar 

  74. Liu J., Zhang A., Liu M., Hu S., Ding F., Song C., and Guo X.: Fe-MOF-derived highly active catalysts for carbon dioxide hydrogenation to valuable hydrocarbons. J. CO2 Util. 21, 100 (2017).

    CAS  Google Scholar 

  75. An B., Cheng K., Wang C., Wang Y., and Lin W.: Pyrolysis of metal-organic frameworks to Fe3O4@Fe5C2 core-shell nanoparticles for fischer-tropsch synthesis. ACS Catal. 6, 3610 (2016).

    CAS  Google Scholar 

  76. Meng W., Chen W., Zhao L., Huan G.Y., Zhu M., Huang Y., Fu Y., Geng F., Yu J., Chen X., and Zhi C.: Porous Fe3O4/carbon composite electrode material prepared from metal-organic framework template and effect of temperature on its capacitance. Nano Energy 8, 133 (2014).

    CAS  Google Scholar 

  77. Li Z., Rayder T.M., Luo L., Byers J.A., and Tsung C.K.: Aperture-opening encapsulation of a transition metal catalyst in a metal-organic framework for CO2 hydrogenation. J. Am. Chem. Soc. 140, 8082 (2018).

    CAS  Google Scholar 

  78. Xu W., Zhang X., Dong M., Zhao J., and Di L.: Plasma-assisted Ru/Zr-MOF catalyst for hydrogenation of CO2 to methane. Plasma Sci. Technol. 21, 044004 (2019).

    CAS  Google Scholar 

  79. Wang C., Xie Z., Dekrafft K.E., and Lin W.: Doping metal-organic frameworks for water oxidation, carbon dioxide reduction, and organic photocatalysis. J. Am. Chem. Soc. 133, 13445 (2011).

    CAS  Google Scholar 

  80. Alvaro M., Carbonell E., Ferrer B., Llabrés I., Xamena F.X., and Garcia H.: Semiconductor behavior of a metal-organic framework (MOF). Chemistry 13, 5106 (2007).

    CAS  Google Scholar 

  81. Lee Y., Kim S., Kang J.K., and Cohen S.M.: Photocatalytic CO2 reduction by a mixed metal (Zr/Ti), mixed ligand metal-organic framework under visible light irradiation. Chem. Commun. 51, 5735 (2015).

    CAS  Google Scholar 

  82. Nasalevich M.A., Hendon C.H., Santaclara J.G., Svane K., Van Der Linden B., Veber S.L., Fedin M.V., Houtepen A.J., Van Der Veen M.A., Kapteijn F., Walsh A., and Gascon J.: Electronic origins of photocatalytic activity in d0 metal organic frameworks. Sci. Rep. 6, 23676 (2016).

  83. Windle C.D., George M.W., Perutz R.N., Summers P.A., Sun X.Z., and Whitwood A.C.: Comparison of rhenium-porphyrin dyads for CO2 photoreduction: Photocatalytic studies and charge separation dynamics studied by time-resolved IR spectroscopy. Chem. Sci. 6, 6847 (2015).

    CAS  Google Scholar 

  84. Fu Y., Sun D., Chen Y., Huang R., Ding Z., Fu X., and Li Z.: An amine-functionalized titanium metal-organic framework photocatalyst with visible-light-induced activity for CO2 reduction. Angew. Chem. Int. Ed. 51, 3364 (2012).

    CAS  Google Scholar 

  85. Cavka J.H., Jakobsen S., Olsbye U., Guillou N., Lamberti C., Bordiga S., and Lillerud K.P.: A new zirconium inorganic building brick forming metal organic frameworks with exceptional stability. J. Am. Chem. Soc. 130, 13850 (2008).

    Google Scholar 

  86. Wang Y., Huang N.Y., Shen J.Q., Liao P.Q., Chen X.M., and Zhang J.P.: Hydroxide ligands cooperate with catalytic centers in metal-organic frameworks for efficient photocatalytic CO2 reduction. J. Am. Chem. Soc. 140, 38 (2018).

    CAS  Google Scholar 

  87. Kajiwara T., Fujii M., Tsujimoto M., Kobayashi K., Higuchi M., Tanaka K., and Kitagawa S.: Photochemical reduction of low concentrations of CO2 in a porous coordination polymer with a ruthenium(II)-CO complex. Angew. Chem. Int. Ed. 55, 2697 (2016).

    CAS  Google Scholar 

  88. Wang D., Huang R., Liu W., Sun D., and Li Z.: Fe-based MOFs for photocatalytic CO2 reduction: Role of coordination unsaturated sites and dual excitation pathways. ACS Catal. 4, 4254 (2014).

    CAS  Google Scholar 

  89. Dao X.Y., Guo J.H., Wei Y.P., Guo F., Liu Y., and Sun W.Y.: Solvent-free photoreduction of CO2 to CO catalyzed by Fe-MOFs with superior selectivity. Inorg. Chem. 58, 8517 (2019).

    CAS  Google Scholar 

  90. Xu H.Q., Hu J., Wang D., Li Z., Zhang Q., Luo Y., Yu S.H., and Jiang H.L.: Visible-light photoreduction of CO2 in a metal-organic framework: Boosting electron-hole separation via electron trap states. J. Am. Chem. Soc. 137, 13440 (2015).

    CAS  Google Scholar 

  91. Chen D., Xing H., Wang C., and Su Z.: Highly efficient visible-light-driven CO2 reduction to formate by a new anthracene-based zirconium MOF via dual catalytic routes. J. Mater. Chem. A 4, 2657 (2016).

    CAS  Google Scholar 

  92. Wu L.Y., Mu Y.F., Guo X.X., Zhang W., Zhang Z.M., Zhang M., and Lu T.B.: Encapsulating perovskite quantum dots in iron-based Metal–Organic Frameworks (MOFs) for efficient photocatalytic CO2 reduction. Angew. Chem. Int. Ed. 58, 9491 (2019).

    CAS  Google Scholar 

  93. Zhu W., Zhang C., Li Q., Xiong L., Chen R., Wan X., Wang Z., Chen W., Deng Z., and Peng Y.: Selective reduction of CO2 by conductive MOF nanosheets as an efficient co-catalyst under visible light illumination. Appl. Catal. B Environ. 238, 339 (2018).

    CAS  Google Scholar 

  94. Al-Omari A.A., Yamani Z.H., and Nguyen H.L.: Electrocatalytic CO2 reduction: From homogeneous catalysts to heterogeneous-based reticular chemistry. Molecules 23, 2835 (2018).

    Google Scholar 

  95. Huang Z., Dong P., Zhang Y., Nie X., Wang X., and Zhang X.: A ZIF-8 decorated TiO2 grid-like film with high CO2 adsorption for CO2 photoreduction. J. CO2 Util. 24, 369 (2018).

    CAS  Google Scholar 

  96. Liu Q., Low Z.X., Li L., Razmjou A., Wang K., Yao J., and Wang H.: ZIF-8/Zn2GeO4 nanorods with an enhanced CO2 adsorption property in an aqueous medium for photocatalytic synthesis of liquid fuel. J. Mater. Chem. A 1, 11563 (2013).

    CAS  Google Scholar 

  97. Habisreutinger S.N., Schmidt-Mende L., and Stolarczyk J.K.: Photocatalytic reduction of CO2 on TiO2 and other semiconductors. Angew. Chem. Int. Ed. 52, 7372 (2013).

    CAS  Google Scholar 

  98. Sun D., Liu W., Fu Y., Fang Z., Sun F., Fu X., Zhang Y., and Li Z.: Noble metals can have different effects on photocatalysis over metal-organic frameworks (MOFs): A case study on M/NH2-MIL-125(Ti) (M = Pt and Au). Chem. A Eur. J. 20, 4780 (2014).

    CAS  Google Scholar 

  99. Wang S., Lin J., and Wang X.: Semiconductor-redox catalysis promoted by metal-organic frameworks for CO2 reduction. Phys. Chem. Chem. Phys. 16, 14656 (2014).

    CAS  Google Scholar 

  100. Shi L., Wang T., Zhang H., Chang K., and Ye J.: Electrostatic self-assembly of nanosized carbon nitride nanosheet onto a zirconium metal-organic framework for enhanced photocatalytic CO2 reduction. Adv. Funct. Mater. 25, 5360 (2015).

    CAS  Google Scholar 

  101. Ye L., Liu J., Gao Y., Gong C., Addicoat M., Heine T., Wöll C., and Sun L.: Highly oriented MOF thin film-based electrocatalytic device for the reduction of CO2 to CO exhibiting high faradaic efficiency. J. Mater. Chem. A 4, 15320 (2016).

    CAS  Google Scholar 

  102. Hod I., Sampson M.D., Deria P., Kubiak C.P., Farha O.K., and Hupp J.T.: Fe-porphyrin-based metal-organic framework films as high-surface concentration, heterogeneous catalysts for electrochemical reduction of CO2. ACS Catal. 5, 6302 (2015).

    CAS  Google Scholar 

  103. Shao P., Yi L., Chen S., Zhou T., and Zhang J.: Metal-organic frameworks for electrochemical reduction of carbon dioxide: The role of metal centers. J. Energy Chem. 40, 156 (2020).

    Google Scholar 

  104. Zhang H., Li J., Tan Q., Lu L., Wang Z., and Wu G.: Metal–organic frameworks and their derived materials as electrocatalysts and photocatalysts for CO2 reduction: Progress, challenges, and perspectives. Chem. A Eur. J. 24, 18137 (2018).

    CAS  Google Scholar 

  105. Lei Z., Xue Y., Chen W., Qiu W., Zhang Y., Horike S., and Tang L.: MOFs-based heterogeneous catalysts: New opportunities for energy-related CO2 conversion. Adv. Energy Mater. 8, 1801587 (2018).

    Google Scholar 

  106. Zhang X., Wu Z., Zhang X., Li L., Li Y., Xu H., Li X., Yu X., Zhang Z., Liang Y., and Wang H.: Highly selective and active CO2 reduction electrocatalysts based on cobalt phthalocyanine/carbon nanotube hybrid structures. Nat. Commun. 8, 1 (2017).

    Google Scholar 

  107. Qiu Y.L., Zhong H.X., Zhang T.T., Xu W.B., Su P.P., Li X.F., and Zhang H.M.: Selective electrochemical reduction of carbon dioxide using Cu based metal organic framework for CO2 capture. ACS Appl. Mater. Interfaces 10, 2480 (2018).

    CAS  Google Scholar 

  108. Jiang X., Wu H., Chang S., Si R., Miao S., Huang W., Li Y., Wang G., and Bao X.: Boosting CO2 electroreduction over layered zeolitic imidazolate frameworks decorated with Ag2O nanoparticles. J. Mater. Chem. A 5, 19371 (2017).

    CAS  Google Scholar 

  109. Huan T.N., Ranjbar N., Rousse G., Sougrati M., Zitolo A., Mougel V., Jaouen F., and Fontecave M.: Electrochemical reduction of CO2 catalyzed by Fe-N-C materials: A structure-selectivity study. ACS Catal. 7, 1520 (2017).

    CAS  Google Scholar 

  110. Nam D.H., Bushuyev O.S., Li J., De Luna P., Seifitokaldani A., Dinh C.T., De García Arquer F.P., Wang Y., Liang Z., Proppe A.H., Tan C.S., Todorović P., Shekhah O., Gabardo C.M., Jo J.W., Choi J., Choi M.J., Baek S.W., et al.: Metal-organic frameworks mediate Cu coordination for selective CO2 electroreduction. J. Am. Chem. Soc. 140, 11378 (2018).

    CAS  Google Scholar 

  111. Kornienko N., Zhao Y., Kley C.S., Zhu C., Kim D., Lin S., Chang C.J., Yaghi O.M., and Yang P.: Metal-organic frameworks for electrocatalytic reduction of carbon dioxide. J. Am. Chem. Soc. 137, 14129 (2015).

    CAS  Google Scholar 

  112. Kang X., Zhu Q., Sun X., Hu J., Zhang J., Liu Z., and Han B.: Highly efficient electrochemical reduction of CO2 to CH4 in an ionic liquid using a metal-organic framework cathode. Chem. Sci. 7, 266 (2016).

    CAS  Google Scholar 

  113. Rosen B.A., Haan J.L., Mukherjee P., Braunschweig B., Zhu W., Salehi-Khojin A., Dlott D.D., and Masel R.I.: In situ spectroscopic examination of a low overpotential pathway for carbon dioxide conversion to carbon monoxide. J. Phys. Chem. C 116, 15307 (2012).

    CAS  Google Scholar 

  114. Senthil Kumar R., Senthil Kumar S., and Anbu Kulandainathan M.: Highly selective electrochemical reduction of carbon dioxide using Cu based metal organic framework as an electrocatalyst. Electrochem. Commun. 25, 70 (2012).

    Google Scholar 

  115. Hinogami R., Yotsuhashi S., Deguchi M., Zenitani Y., Hashiba H., and Yamada Y.: Electrochemical reduction of carbon dioxide using a copper rubeanate metal organic framework. ECS Electrochem. Lett. 1, H17 (2012).

  116. Albo J., Vallejo D., Beobide G., Castillo O., Castaño P., and Irabien A.: Copper-based metal–organic porous materials for CO2 electrocatalytic reduction to alcohols. ChemSusChem 10, 1100 (2017).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudio Pettinari.

Abbreviations

[(Etim-H2BDC)Br]

2-(3-Ethylimidazol-1-yl)terephthalic acid

BDC

1,4-Benzenedicarboxylate

bpdc

Biphenyl-4,4′-dicarboxylate

bpy

4,4′-Bipyridine

BPYDC

2,2′-Bipyridine-5,5′-dicarboxylate

BPZNH2

3-Amino-4,4′-bipyrazolate

Btz

1,5-Bis(5-tetrazole)-3-oxapentanoate

CCU

Carbon Capture and Utilization

dabco

1,4-Diazabicyclooctane

dcppy

2-Phenylpyridine-5,4′-dicarboxylate

DBU

1,8-Diazabicyclo-[5.4.0]underc-7-ene

DMF

N,N-Dimetilformammide

ECH

Epichloridrine

FTO

Fluorine-doped tin oxide

FTS

Fischer Tropsch Catalysis

IN

Isonicotinate

L1

10-(4-Carboxy-phenyl)-10H-phenoxazine- 3,6-dicarboxylic)

L2

N1-(4-(1H-Imidazol-1-yl)benzyl)-N1-(2-aminoethyl)-ethane- 1,2-diamine)

L3

2,2′-Bipyridine-5,5′-dicarboxylate

NPs

Nanoparticles

OCs

Cyclic organic carbonates

tBuPNP

2,6-Bis((di-tert-butyl-phosphino)methyl)pyridine

SURMOF

Surface-Anchored Metal–Organic Frameworks

TATAB

4,4′,4′′-((1,3,5-Triazine-2,4,6-triyl)-tris(azanediyl))-tribenzoic acid

TBAB

Tetrabutylammonium bromide

TCPE

Tetrakis(4-carboxyphenyl)ethylene

TCPP

[Meso-tetra(4-carboxyphenyl)porphyrin]

TEOA

Triethanolamine

TzTz

[2,2′-Bithiazole]-5,5′-dicarboxylate

TOF

Turnover frequency

TON

Total turnover number

ZIF

Zeolitic imidazolate framework

Ba-MOF

[Ba2(BDPO)(H2O)]

Co-MOF

[Co(μ3-L)(H2O)]⋅0.5H2O (L = thiazolidine 2,4-dicarboxylate)

Cr-MIL-101

Cr3O(H2O)2F(BDC)3

Fe-MIL-88B

Fe3O(solvent)3Cl(BDC)3(solvent)m

Fe-MOF-525

Zr6O4(OH)8(TCPP)2

Hf-NU-1000

Hf6(OH)16(TBAPy)2

HKUST-1

[Cu3(BTC)2]

IRMOF-3

[Zn4O(NH2-BDC)3]

JUC-1000

[Cu24(BDPO)12(H2O)12]·30DMF·14H2O

MIL-101

Cr3O(H2O)2F(BDC)3

MIL-125

Ti8O8(OH)4(BDC)6

MMCF-2

[Cu2(Cu-tactmb)(H2O)3(NO3)2]

MMPF-9

Cu6(Cu-tetrakis(3,5-dicarboxybiphenyl) porphinate)O4(HCOO)4

MOF-505

Cu2(EBTC)(H2O)2

MOF-525

Zr6O4(OH)8(TCPP)2

NH2-MIL-125

[Ti8O8(OH)4(NH2-BDC)6]

Ni-TCPE-1

{[Ni4(TCPE)(μ3-OH)2(H2O)6]⋅2(H2O)⋅DMA}n

NNU-28

[Zr6O4(OH)4(L)6]⋅6DMF (L = 4,40-(anthracene- 9,10-diylbis(ethyne-2,1-diyl))dibenzoate)

PCN-222

Zr63-OH)8(OH)8-(TCPP)2

PCN-900

[(CH3)2NH2]2[Eu63-OH)8(TCPP)1.5 (DCDPS)3]·(solvent)x

UiO-66

Zr6O4(OH)4(BDC)6

UiO-67

Zr63-O)43-OH)4(BPDC)12

ZIF-8

Zn(MeIm)2

ZIF-9

Co(PhIm)2

Zn-btz-MOF

Zn(2-(2-hydroxyphenyl)benzothiazolate)2

Zr-NU-1000

Zr6(OH)16(TBAPy)2

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pettinari, C., Tombesi, A. Metal–organic frameworks for chemical conversion of carbon dioxide. MRS Energy & Sustainability 7, 31 (2020). https://doi.org/10.1557/mre.2020.35

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1557/mre.2020.35

Keywords

Navigation