Sustainable design of fully recyclable all solid-state batteries

Abstract

A scalable battery recycling strategy to recover and regenerate solid electrolytes and cathode materials in spent all solid-state batteries, reducing energy consumption and greenhouse gases.

With the rapidly increasing ubiquity of lithium-ion batteries (LIBs), sustainable battery recycling is a matter of growing urgency. The major challenge faced in LIB sustainability lies with the fact that the current LIBs are not designed for recycling, making it difficult to engineer recycling approaches that avoid breaking batteries down into their raw materials. Thus, it is prudent to explore new approaches to both fabricate and recycle next-generation batteries before they enter the market. Here, we developed a sustainable design and scalable recycling strategy for next-generation all solid-state batteries (ASSBs). We use the EverBatt model to analyze the relative energy consumption and environmental impact compared to conventional recycling methods. We demonstrate efficient separation and recovery of spent solid electrolytes and electrodes from a lithium metal ASSB and directly regenerate them into usable formats without damaging their core chemical structure. The recycled materials are then reconstituted to fabricate new batteries, achieving similar performance as pristine ASSBs, completing the cycle. This work demonstrates the first fully recycled ASSB and provides critical design consideration for future sustainable batteries.

This is a preview of subscription content, access via your institution.

Figure 1.
Figure 2.
Table 1.
Table 2.
Figure 3.
Table 3.
Figure 4.

References

  1. 1.

    Diouf B. and Pode R.: Potential of lithium-ion batteries in renewable energy. Renew. Energy 76, 375–380 (2015).

    Article  Google Scholar 

  2. 2.

    Qiao Q., Zhao F., Liu Z., and Hao H.: Electric vehicle recycling in China: Economic and environmental benefits. Resour. Conserv. Recycl. 140, 45–53 (2019).

    Article  Google Scholar 

  3. 3.

    Harper G., Sommerville R., Kendrick E., Driscoll L., Slater P., Stolkin R., Walton A., Christensen P., Heidrich O., Lambert S., Abbott A., Ryder K., Gaines L., and Anderson P.: Recycling lithium-ion batteries from electric vehicles. Nature 575, 75–86 (2019).

    CAS  Article  Google Scholar 

  4. 4.

    Wang X., Gaustad G., Babbitt C.W., and Richa K.: Economies of scale for future lithium-ion battery recycling infrastructure. Resour. Conserv. Recycl. 83, 53–62 (2014).

    Article  Google Scholar 

  5. 5.

    Li L., Zhang X., Li M., Chen R., Wu F., Amine K., and Lu J.: The recycling of spent lithium-ion batteries: A review of current processes and technologies. Electrochem. Energy Rev. 1, 461–482 (2018).

    CAS  Article  Google Scholar 

  6. 6.

    Zheng X., Zhu Z., Lin X., Zhang Y., He Y., Cao H., and Sun Z.: A mini-review on metal recycling from spent lithium ion batteries. Engineering 4, 361–370 (2018).

    CAS  Article  Google Scholar 

  7. 7.

    Yun L., Linh D., Shui L., Peng X., Garg A., Le M.L.P., Asghari S., and Sandoval J.: Metallurgical and mechanical methods for recycling of lithium-ion battery pack for electric vehicles. Resour. Conserv. Recycl. 136, 198–208 (2018).

    Article  Google Scholar 

  8. 8.

    Lv W., Wang Z., Cao H., Sun Y., Zhang Y., and Sun Z.: A critical review and analysis on the recycling of spent lithium-ion batteries. ACS Sustain. Chem. Eng. 6, 1504–1521 (2018).

    CAS  Article  Google Scholar 

  9. 9.

    Spangenberger J.: Novel processing and design technologies will make battery recycling profitable. ReCell Center, U. S. D. o. E., Ed., 2019.

    Google Scholar 

  10. 10.

    Lee Y.-G., Fujiki S., Jung C., Suzuki N., Yashiro N., Omoda R., Ko D.-S., Shiratsuchi T., Sugimoto T., Ryu S., Ku J.H., Watanabe T., Park Y., Aihara Y., Im D., and Han I.T.: High-energy long-cycling all-solid-state lithium metal batteries enabled by silver–carbon composite anodes. Nat. Energy 5, 299–308 (2020).

    CAS  Article  Google Scholar 

  11. 11.

    Manthiram A., Yu X., and Wang S.: Lithium battery chemistries enabled by solid-state electrolytes. Nat. Rev. Mater. 2, 16103 (2017).

    CAS  Article  Google Scholar 

  12. 12.

    Tan D.H.S., Banerjee A., Chen Z., and Meng Y.S.: From nanoscale interface characterization to sustainable energy storage using all-solid-state batteries. Nat. Nanotechnol. 15, 170–180 (2020).

    CAS  Article  Google Scholar 

  13. 13.

    Nam Y.J., Oh D.Y., Jung S.H., and Jung Y.S.: Toward practical all-solid-state lithium-ion batteries with high energy density and safety: Comparative study for electrodes fabricated by dry- and slurry-mixing processes. J. Power Sources 375, 93–101 (2018).

    CAS  Article  Google Scholar 

  14. 14.

    Miura A., Rosero-Navarro N.C., Sakuda A., Tadanaga K., Phuc N.H.H., Matsuda A., Machida N., Hayashi A., and Tatsumisago M.: Liquid-phase syntheses of sulfide electrolytes for all-solid-state lithium battery. Nat. Rev. Chem. 3, 189–198 (2019).

    CAS  Article  Google Scholar 

  15. 15.

    Xu R.C., Xia X.H., Yao Z.J., Wang X.L., Gu C.D., and Tu J.P.: Preparation of Li7P3S11 glass-ceramic electrolyte by dissolution-evaporation method for all-solid-state lithium ion batteries. Electrochim. Acta 219, 235–240 (2016).

    CAS  Article  Google Scholar 

  16. 16.

    Calpa M., Rosero-Navarro N.C., Miura A., and Tadanaga K.: Instantaneous preparation of high lithium-ion conducting sulfide solid electrolyte Li7P3S11 by a liquid phase process. RSC Adv. 7, 46499–46504 (2017).

    CAS  Article  Google Scholar 

  17. 17.

    Kim D.H., Oh D.Y., Park K.H., Choi Y.E., Nam Y.J., Lee H.A., Lee S.M., and Jung Y.S.: Infiltration of solution-processable solid electrolytes into conventional Li-ion-battery electrodes for all-solid-state Li-ion batteries. Nano Lett. 17, 3013–3020 (2017).

    CAS  Article  Google Scholar 

  18. 18.

    Han F., Westover A.S., Yue J., Fan X., Wang F., Chi M., Leonard D.N., Dudney N.J., Wang H., and Wang C.: High electronic conductivity as the origin of lithium dendrite formation within solid electrolytes. Nat. Energy 4, 187–196 (2019).

    CAS  Article  Google Scholar 

  19. 19.

    Randau S., Weber D.A., Kötz O., Koerver R., Braun P., Weber A., Ivers-Tiffée E., Adermann T., Kulisch J., Zeier W.G., Richter F.H., and Janek J.: Benchmarking the performance of all-solid-state lithium batteries. Nat. Energy 5, 259–270 (2020).

    CAS  Article  Google Scholar 

  20. 20.

    Zhou Y., Doerrer C., Kasemchainan J., Bruce P.G., Pasta M., and Hardwick L.: Observation of interfacial degradation of Li6PS5Cl against lithium metal and LiCoO2 via in situ electrochemical Raman microscopy. Batteries Supercaps 3, 647–652 (2020).

    CAS  Article  Google Scholar 

  21. 21.

    Gao B., Jalem R., Ma Y., and Tateyama Y.: Li+ Transport mechanism at the heterogeneous cathode/solid electrolyte interface in an all-solid-state battery via the first-principles structure prediction scheme. Chem. Mater. 32, 85–96 (2019).

    Article  Google Scholar 

  22. 22.

    Wan M., Kang S., Wang L., Lee H.W., Zheng G.W., Cui Y., and Sun Y.: Mechanical rolling formation of interpenetrated lithium metal/lithium tin alloy foil for ultrahigh-rate battery anode. Nat. Commun. 11, 829 (2020).

    CAS  Article  Google Scholar 

  23. 23.

    Nam Y.J., Oh D.Y., Jung S.H., and Jung Y.S.: Toward practical all-solid-state lithium-ion batteries with high energy density and safety: Comparative study for electrodes fabricated by dry- and slurry-mixing processes. J. Power Sources 375, 93–101 (2018).

    CAS  Article  Google Scholar 

  24. 24.

    Lee Y.-G., Fujiki S., Jung C., Suzuki N., Yashiro N., Omoda R., Ko D.-S., Shiratsuchi T., Sugimoto T., Ryu S., Ku J.H., Watanabe T., Park Y., Aihara Y., Im D., and Han I.T.: High-energy long-cycling all-solid-state lithium metal batteries enabled by silver–carbon composite anodes. Nat. Energy 5, 299–308 (2020).

    CAS  Article  Google Scholar 

  25. 25.

    EverBatt: Argonne's closed-loop battery life-cycle model. Available at: https://www.anl.gov/egs/everbatt (accessed June 21, 2020).

  26. 26.

    Lv W., Wang Z., Cao H., Sun Y., Zhang Y., and Sun Z.: A Critical review and analysis on the recycling of spent lithium-ion batteries. ACS Sustain. Chem. Eng. 6, 1504–1521 (2018).

    CAS  Article  Google Scholar 

  27. 27.

    Yun L., Linh D., Shui L., Peng X., Garg A., Le M.L.P., Asghari S., and Sandoval J.: Metallurgical and mechanical methods for recycling of lithium-ion battery pack for electric vehicles. Resour. Conserv. Recycl. 136, 198–208 (2018).

    Article  Google Scholar 

  28. 28.

    Shi Y., Chen G., and Chen Z.: Effective regeneration of LiCoO2 from spent lithium-ion batteries: A direct approach towards high-performance active particles. Green Chem. 20, 851–862 (2018).

    CAS  Article  Google Scholar 

  29. 29.

    Shi Y., Zhang M., Meng Y.S., and Chen Z.: Ambient-pressure relithiation of degraded LixNi0.5Co0.2Mn0.3O2 (0<x<1) via eutectic solutions for direct regeneration of lithium-ion battery cathodes. Adv. Energy Mater. 9, 1900454 (2019).

    Article  Google Scholar 

  30. 30.

    Liu T., Zhang Y., Chen C., Lin Z., Zhang S., and Lu J.: Sustainability-inspired cell design for a fully recyclable sodium ion battery. Nat. Commun. 10, 1965 (2019).

    Article  Google Scholar 

  31. 31.

    Nowak S., and Winter M.: The role of sub- and supercritical CO2 as “processing solvent” for the recycling and sample preparation of lithium ion battery electrolytes. Molecules 22, 403 (2017).

    Article  Google Scholar 

  32. 32.

    Liu Y., Mu D., Zheng R., and Dai C.: Supercritical CO2 extraction of organic carbonate-based electrolytes of lithium-ion batteries. RSC Adv. 4, 54525–54531 (2014).

    CAS  Article  Google Scholar 

  33. 33.

    Grützke M., Mönnighoff X., Horsthemke F., Kraft V., Winter M., and Nowak S.: Extraction of lithium-ion battery electrolytes with liquid and supercritical carbon dioxide and additional solvents. RSC Adv. 5, 43209–43217 (2015).

    Article  Google Scholar 

  34. 34.

    Golubkov A.W., Fuchs D., Wagner J., Wiltsche H., Stangl C., Fauler G., Voitic G., Thaler A., and Hacker V.: Thermal-runaway experiments on consumer Li-ion batteries with metal-oxide and olivin-type cathodes. RSC Adv. 4, 3633–3642 (2014).

    CAS  Article  Google Scholar 

  35. 35.

    Tan D.H.S., Wu E.A., Nguyen H., Chen Z., Marple M.A.T., Doux J.-M., Wang X., Yang H., Banerjee A., and Meng Y.S.: Elucidating reversible electrochemical redox of Li6PS5Cl solid electrolyte. ACS Energy Lett. 4, 2418–2427 (2019).

    CAS  Article  Google Scholar 

  36. 36.

    Auvergniot J., Cassel A., Ledeuil J.-B., Viallet V., Seznec V., and Dedryvère R.: Interface stability of argyrodite Li6PS5Cl toward LiCoO2, LiNi1/3Co1/3Mn1/3O2, and LiMn2O4 in bulk all-solid-state batteries. Chem. Mater. 29, 3883–3890 (2017).

    CAS  Article  Google Scholar 

  37. 37.

    Doux J.M., Nguyen H., Tan D.H.S., Banerjee A., Wang X., Wu E.A., Jo C., Yang H., and Meng Y.S.: Stack pressure considerations for room-temperature all-solid-state lithium metal batteries. Adv. Energy Mater. 10, 1903253 (2019).

    Article  Google Scholar 

  38. 38.

    Banerjee A., Park K.H., Heo J.W., Nam Y.J., Moon C.K., Oh S.M., Hong S.T., and Jung Y.S.: Na3SbS4: A solution processable sodium superionic conductor for all-solid-state sodium-ion batteries. Angew. Chem. Int. Ed. Engl. 55, 9634–9638 (2016).

    CAS  Article  Google Scholar 

  39. 39.

    Li X., Liang J., Chen N., Luo J., Adair K.R., Wang C., Banis M.N., Sham T.K., Zhang L., Zhao S., Lu S., Huang H., Li R., and Sun X.: Water-mediated synthesis of a superionic halide solid electrolyte. Angew Chem. Int. Ed. Engl. 58, 16427–16432 (2019).

    CAS  Article  Google Scholar 

  40. 40.

    Song X., Hu T., Liang C., Long H.L., Zhou L., Song W., You L., Wu Z.S., and Liu J.W.: Direct regeneration of cathode materials from spent lithium iron phosphate batteries using a solid phase sintering method. RSC Adv. 7, 4783–4790 (2017).

    CAS  Article  Google Scholar 

Download references

Acknowledgments

Z.C. gratefully acknowledges funding from US National Science Foundation via Award CBET-1805570 and the start-up fund support from the Jacob School of Engineering at UC San Diego. Y.S.M. acknowledges the funding support from Zable Endowed Chair Fund.

A patent was filed for this work through the UCSD Office of Innovation and Commercialization.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Zheng Chen.

Supplementary material

Supplementary material

To view supplementary material for this article, please visit https://doi.org/10.1557/mre.2020.25.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Tan, D.H.S., Xu, P., Yang, H. et al. Sustainable design of fully recyclable all solid-state batteries. MRS Energy & Sustainability 7, 23 (2020). https://doi.org/10.1557/mre.2020.25

Download citation

Keywords

  • energy storage
  • Li
  • life cycle
  • recycling