The use of decision support tools to accelerate the development of circular economic business models for hard disk drives and rare-earth magnets


A case study of hard disk drives (HDDs) and rare-earth magnets is presented to show the use of decision support tools to identify and assess the barriers and opportunities for circular business models. Pilot demonstration projects, which showcased HDD circular recovery strategies, were useful as a low-risk opportunity for business model experimentation and to build trust among key supply chain actors.

A case study of hard disk drives and rare-earth magnets is presented to show the use of decision support tools (DSTs) to assess the complex interaction of variables that must be considered when demonstrating the viability of circular business models (CBMs). A mix of quantitative and qualitative DSTs such as life cycle assessment, techno-economic assessment, Ostrom's Framework for social-ecological systems, decision trees, and others were implemented by the iNEMI Value Recovery Project team to overcome many of the identified barriers to circular economy. The DSTs were used to guide stakeholder coordination, create and share environmental, logistical and financial data, and generate decision-making flowcharts which promote circular economic strategies. Demonstration projects were used as a low-risk opportunity for business model experimentation and to build trust among key supply chain actors. The tools highlighted by this case study could be useful for establishing or expanding CBMs for other electronic products or components, especially components containing critical materials.

This is a preview of subscription content, access via your institution.

Table 1.
Figure 1.
Figure 2.
Table 2.
Figure 3.
Figure 4.
Figure 5.
Table 3.


  1. 1.

    PwC: Make it your business: Engaging with the Sustainable Development Goals, 2015. Available at:

    Google Scholar 

  2. 2.

    Material Economics: The Circular Economy: A Powerful Force for Climate Mitigation (Stockholm, Sweden, 2018). Available at:

    Google Scholar 

  3. 3.

    Ellen MacArthur Foundation: Towards the Circular Economy: Economic and Business Rationale for an Accelerated Transition, Vol. 1 (2013). Available at:

  4. 4.

    Ludeke-Freund F., Gold S., and Bocken N.M.P.: A review and typology of circular economic business model patterns. J. Ind. Ecol. 23, 36–61 (2018). doi:10.1111/jiec.12763.

    Article  Google Scholar 

  5. 5.

    International Electronics Manufacturing Initiative: Value recovery from used electronics, Phase 2. Available at: (accessed January 5, 2020).

  6. 6.

    Handwerker C.A., Olson W., and Rifer W.: Value Recovery from Used Electronics. iNEMI Final Project Report–Phase 1, February 2017. Available at:

    Google Scholar 

  7. 7.

    Guldmann E., Bocken N.M., and Brezet H.: A design thinking framework for circular business model innovation. J. Bus. Models 7, 39–70 (2019). doi:10.5278/ojs.jbm.v7i1.2122.

    Google Scholar 

  8. 8.

    Handwerker C.A. and Olson W.: Value Recovery from Used Electronics Project. iNEMI Final Project Report Phase 2, August 2019. Available at:

    Google Scholar 

  9. 9.

    University of Cambridge Institute for Manufacturing: Decision support tools: Overview. Available at: (accessed October 20, 2019).

  10. 10.

    Huysegoms L. and Cappuyns V.: Critical review of decision support tools for sustainability assessment of site remediation options. J. Environ. Manage. 196, 278–296 (2017). doi:10.1016/j.jenvman.2017.03.002.

    Article  Google Scholar 

  11. 11.

    Bocken N., Strupeit L., Whalen K., and Nußholz J.: A review and evaluation of circular business model innovation tools. Sustainability 11, 2210 (2019). doi:10.3390/su11082210.

    Article  Google Scholar 

  12. 12.

    Bocken N.M., Miller K., Weissbrod I.K., Holgado M., and Evans S.: Business model experimentation for circularity: Driving sustainability in a large international clothing retailer. Econ. Policy Energy Environ. (EPEE). Special Issue on Circular Economy (2017). doi:10.3280/EFE2017-001006.

    Google Scholar 

  13. 13.

    Ritzén S. and Sandström G.Ö.: Barriers to the circular economy–integration of perspectives and domains. Procedia CIRP 64, 7–12 (2017).

    Article  Google Scholar 

  14. 14.

    Kirchherr J.W., Hekkert M.P., Bour R., Huijbrechtse-Truijens A., Kostense-Smit E., and Muller J.: Breaking the barriers to the circular economy (2017). Available at:

  15. 15.

    Rizos V., Behrens A., Kafyeke T., Hirschnitz-Garbers M., and Ioannou A.: The circular economy: Barriers and opportunities for SMEs. CEPS Working Documents, September 2015. Available at:

    Google Scholar 

  16. 16.

    Galvão G.D.A., de Nadae J., Clemente D.H., Chinen G., and de Carvalho M.M.: Circular economy: Overview of barriers. Procedia CIRP 73, 79–85 (2018). doi:10.1016/j.procir.2018.04.011.

    Article  Google Scholar 

  17. 17.

    Tura N., Hanski J., Ahola T., Ståhle M., Piiparinen S., and Valkokari P.: Unlocking circular business: A framework of barriers and drivers. J. Clean. Prod. 212, 90–98 (2019).

    Article  Google Scholar 

  18. 18.

    Shehabi A., Smith S., Sartor D., Brown R., Herrlin M., Koomey J., Masanet E., Horner N., Azevedo I., and Lintner W.: United states data center energy usage report, June 1, 2016. Lawrence Berkeley National Lab (LBNL), Berkeley, CA, USA. Available at:

    Google Scholar 

  19. 19.

    Nguyen R.T., Diaz L.A., Imholte D.D., and Lister T.E.: Economic assessment for recycling critical metals from hard disk drives using a comprehensive recovery process. JOM (2017). doi:10.1007/s11837-017-2399-2.

    Google Scholar 

  20. 20.

    Reinsel D., Gantz J., and Rydning J.: Data Age 2025: The Digitization of the World From Edge to Core. IDC White Paper, November 2018. Available at:

  21. 21.

    Bauer R.: HDD vs SSD: What Does the Future for Storage Hold? — Part 2. Backblaze, March 13, 2018. Available at:

    Google Scholar 

  22. 22.

    Binnemans K., Jones P.T., Blanpain B., Van Gerven T., Yang Y., Walton A., and Buchert M.: Recycling of rare earths: A critical review. J. Clean. Prod. 51, 1–22 (2013). doi:10.1016/j.jclepro.2012.12.037

    CAS  Article  Google Scholar 

  23. 23.

    US Geological Survey: Mineral Commodity Summaries: Rare Earths, February 2019. Available at:

    Google Scholar 

  24. 24.

    Sabbaghi M., Cade W., Olson W., and Behdad S.: The global flow of hard disk drives: Quantifying the concept of value leakage in e-waste recovery systems. J. Ind. Ecol. 23, 560–573 (2018). doi:10.1111/jiec.12765.

    Article  Google Scholar 

  25. 25.

    Ellen MacArthur Foundation: Circular Economy System Diagram. Available at: (accessed October 22, 2018).

  26. 26.

    Zakotnik M., Afiuny P., Dunn S., and Tudor C.O.: U.S. Patent No. 9,067,284. Washington, DC: U.S. Patent and Trademark Office (2015).

  27. 27.

    Zakotnik M. and Tudor C.O.: Commercial-scale recycling of NdFeB-type magnets with grain boundary modification yields products with “designer properties” that exceed those of starting materials. Waste Manage. 44, 48–54 (2015). doi:10.1016/j.wasman.2015.07.041.

    CAS  Article  Google Scholar 

  28. 28.

    Prodius D., Gandha K., Mudring A.V., and Nlebedim I.C.: Sustainable urban mining of critical elements from magnet and electronic wastes. ACS Sustain. Chem. Eng. 8, 1455–1463 (2020). doi:10.1021/acssuschemeng.9b05741.

    CAS  Article  Google Scholar 

  29. 29.

    Handwerker C. and Olson W.: Creating a Circular Economy for Hard Disk Drives–A Shared Vision (October 31, 2018). End-of-Project Webinar. Available at:

    Google Scholar 

  30. 30.

    Ostrom E.: A general framework for analyzing sustainability of social-ecological systems. Science 325, 419 (2009).

    CAS  Article  Google Scholar 

  31. 31.

    McGinnis M.D. and Ostrom E.: Social-ecological system framework: Initial changes and continuing challenges. Ecol. Soc. 19, 30 (2014). doi:10.5751/ES-06387-190230.

    Article  Google Scholar 

  32. 32.

    Ostrom E.: Background on the institutional analysis and development framework. Policy Stud. J. 39, 7–24 (2011). Available at:

    Article  Google Scholar 

  33. 33.

    Handwerker C., Olson W., Spencer G., Schaffer M., and Frost K.: Application of the Ostrom framework to support a circular economy for used electronics. In Proceedings of CARE Innovation, Vienna, Austria, 2018.

  34. 34.

    Asif F.M., Rashid A., Bianchi C., and Nicolescu C.M.: System dynamics models for decision making in product multiple lifecycles. Resour. Conserv. Recycl. 101, 20–33 (2015).

    Article  Google Scholar 

  35. 35.

    Asif F.M., Lieder M., and Rashid A.: Multi-method simulation based tool to evaluate economic and environmental performance of circular product systems. J. Clean. Prod. 139, 1261–1281 (2016).

    Article  Google Scholar 

  36. 36.

    ISO 14040: Environmental Management—Life Cycle Assessment—Principles and Framework (Geneva, Switzerland, 2006).

    Google Scholar 

  37. 37.

    Jin H., Frost K., Sousa I., Ghaderi H., Bevan A., Zakotnik M., and Handwerker C.: Life cycle assessment of emerging technologies on value recovery from hard disk drives. Resour. Conserv. Recycl. 157, 104781 (2020). doi:10.1016/j.resconrec.2020.104781.

    Article  Google Scholar 

  38. 38.

    Rigamonti L., Falbo A., Zampori L., and Sala S.: Supporting a transition towards sustainable circular economy: Sensitivity analysis for the interpretation of LCA for the recovery of electric and electronic waste. Int. J. Life Cycle Assess. 22, 1278–1287 (2017). doi:10.1007/s11367-016-1231-5.

    Article  Google Scholar 

  39. 39.

    Angouria-Tsorochidou E., Cimpan C., and Parajuly K.: Optimized collection of EoL electronic products for circular economy: A techno-economic assessment. Procedia CIRP 69, 986–991 (2018).

    Article  Google Scholar 

  40. 40.

    Diaz L.A. and Lister T.: Economic evaluation of an electrochemical process for the recovery of metals from electronic waste. Waste Manage. 74 (2017). doi:10.1016/j.wasman.2017.11.050.

  41. 41.

    Lacovidou E., Busch J., Hahladakis J., Baxter H., Ng K., and Herbert B.: A parameter selection framework for sustainability assessment. Sustainability 9, 1497 (2017).

    Article  Google Scholar 

  42. 42.

    Ziout A., Azab A., and Atwan M.: A holistic approach for decision on selection of end-of-life products recovery options. J. Clean. Prod. 65, 497–516 (2014). doi:10.1016/j.jclepro.2013.10.001.

    Article  Google Scholar 

  43. 43.

    NSF International: NSF/ANSI 426-2019 Environmental Leadership and Corporate Social Responsibility Assessment of Servers. NSF International, December 2019. Available at:

    Google Scholar 

  44. 44.

    International Electronics Manufacturing Initiative: Non-physical data destruction for enterprise storage. Available at: (accessed May 1, 2020).

    Google Scholar 

  45. 45.

    Toyota: Toyota develops new magnet for electric motors aiming to reduce use of critical rare-earth element by up to 50%, February 20, 2018. Available at: (accessed May 6, 2020).

    Google Scholar 

  46. 46.

    Department of Energy.: Electric Motors Research and Development DOE alternatives. Available at: (accessed May 5, 2020).

  47. 47.

    Yano J., Muroi T., and Sakai S.I.: Rare earth element recovery potentials from end-of-life hybrid electric vehicle components in 2010–2030. J. Mater. Cycles Waste Manage. 18, 655–664 (2016).

    CAS  Article  Google Scholar 

  48. 48.

    Ballinger B., Schmeda-Lopez D., Kefford B., Parkinson B., Stringer M., Greig C., and Smart S.: The vulnerability of electric-vehicle and wind-turbine supply chains to the supply of rare-earth elements in a 2-degree scenario. Sustain. Prod. Consump. 22, 68–76 (2020).

    Article  Google Scholar 

  49. 49.

    Pavel C.C., Thiel C., Degreif S., Blagoeva D., Buchert M., Schüler D., and Tzimas E.: Role of substitution in mitigating the supply pressure of rare earths in electric road transport applications. Sustain. Mater. Technol. 12, 62–72 (2017). doi:10.1016/j.susmat.2017.01.003.

    Google Scholar 

  50. 50.

    Ellen MacArthur Foundation and Ansys/Granta: Material Circulatory Indicators: An Approach to Measuring Circularity, 2019. Available at: (accessed December 1, 2019).

    Google Scholar 

Download references


The authors acknowledge the International Electronics Manufacturing Initiative (iNEMI) for organizing this project. We thank all of the iNEMI Value Recovery of Used Electronics, Phase 2 project team for their incredible contributions.

Some of this work was supported by the Critical Materials Institute, an Energy Innovation Hub funded by the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Advanced Manufacturing Office for developing the punching process for intact magnet recovery, REE recycling technologies, techno-economic analysis, life cycle assessment, and system dynamics models.

Author information



Corresponding author

Correspondence to Carol Handwerker.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Frost, K., Jin, H., Olson, W. et al. The use of decision support tools to accelerate the development of circular economic business models for hard disk drives and rare-earth magnets. MRS Energy & Sustainability 7, 22 (2020).

Download citation


  • circular economy
  • critical materials
  • rare-earths
  • recovery
  • reuse
  • recycling
  • sustainability
  • supply chain
  • life cycle assessment