Phase separation of a nematic liquid crystal in the self-assembly of lysozyme in a drying aqueous solution drop

Abstract

This paper discusses the unique patterns evolved through phase separation of a bulk liquid crystal (LC) from the self-assembly of lysozyme induced by evaporation of de-ionized water only. Each domain shows a central dark region surrounded by bright regions (randomly oriented LC droplets). The birefringence intensity reveals three regimes (a slow increase, rapid rise, then saturation) not seen without LC droplets. The textural study exhibits a simple exponential behavior that changes as a function of LC concentration. Furthermore, in the presence of LC, the crack patterns are found to be different near the drop edge than those in the central region.

This is a preview of subscription content, access via your institution.

Figure 1.
Figure 2.
Figure 3.
Figure 4.

References

  1. 1.

    T. Kato: Self-assembly of phase-segregated liquid crystal structures. Science 295, 2414 (2002).

    CAS  Article  Google Scholar 

  2. 2.

    Q.Z. Hu and C.H. Jang: Imaging trypsin activity through changes in the orientation of liquid crystals coupled to the interactions between a poly-electrolyte and a phospholipid layer. Appl. Mater. Interfaces 4, 1791 (2012).

    CAS  Article  Google Scholar 

  3. 3.

    Q.Z. Hu and C.H. Jang: A simple strategy to monitor lipase activity using liquid crystal-based sensors. Talanta 99, 36 (2012).

    CAS  Article  Google Scholar 

  4. 4.

    D. Liu, Q.Z. Hu, and C.H. Jang: Orientational behaviors of liquid crystals coupled to chitosan-disrupted phospholipid membranes at the aqueous-liquid crystal interface. Colloids Surf. B 108, 142 (2013).

    CAS  Article  Google Scholar 

  5. 5.

    L. Marin, M.C. Popescu, A. Zabulica, H. Uji, and E. Fron: Chitosan as matrix for biopolymer dispersed liquid crystal systems. Carbohydr. Polym. 95, 16 (2013).

    CAS  Article  Google Scholar 

  6. 6.

    M.A. Shehzad, D.H. Tien, M.W. Iqbal, J. Eom, J.H. Park, C. Hwang, and Y. Seo: Nematic liquid crystal on a two dimensional hexagonal lattice and its application. Sci. Rep. 5, 13331 (2015).

    Article  Google Scholar 

  7. 7.

    M.J. Lee, C.H. Chang, and W. Lee: Label-free protein sensing by employing blue phase liquid crystal. Biomed. Opt. Express 8, 1712 (2017).

    CAS  Article  Google Scholar 

  8. 8.

    S.A. Ryu, J.Y. Kim, S.Y. Kim, and B.M. Weon: Drying-mediated patterns in colloid-polymer suspensions. Sci. Rep. 7, 1079 (2017).

    Article  Google Scholar 

  9. 9.

    Y.J. Carreón, J. Gonzalez-Gutiérrez, M.I. Pérez-Camacho, and H. Mercado-Uribe: Patterns produced by dried droplets of protein binary mixtures suspended in water. Colloids Surf. B. 161, 103 (2018).

    Article  Google Scholar 

  10. 10.

    Z.S. Davidson, Y. Huang, A. Gross, A. Martinez, T. Still, C. Zhou, P.J. Collings, R.D. Kamien, and A.G. Yodh: Deposition and drying dynamics of liquid crystal droplets. Nat. Commun. 8, 15642 (2017).

    CAS  Article  Google Scholar 

  11. 11.

    G. Chu and E. Zussman: From chaos to order: evaporative assembly and collective behavior in drying liquid crystal droplets. J. Phys. Chem. Lett. 9, 4795 (2018).

    CAS  Article  Google Scholar 

  12. 12.

    C. Querner, M.D. Fischbein, P.A. Heiney, and M. Drndic: Millimeter-scale assembly of CdSe nanorods into smectic superstructures by solvent drying kinetics. Adv. Mater. 20, 2308 (2008).

    CAS  Article  Google Scholar 

  13. 13.

    C. Nobile, L. Carbone, A. Fiore, R. Cingolani, L. Manna, and R. Krahne: Self-assembly of highly fluorescent semiconductor nanorods into large scale smectic liquid crystal structures by coffee stain evaporation dynamics. J. Phys. 21, 264013 (2009).

    Google Scholar 

  14. 14.

    G. Chu, R. Vilensky, G. Vasilyev, P. Martin, R. Zhang, and E. Zussman: Structure evolution and drying dynamics in sliding cholesteric cellulose nanocrystals. J. Phys. Chem. Lett. 9, 1845 (2018).

    CAS  Article  Google Scholar 

  15. 15.

    D. Brutin and V. Starov: Recent advances in droplet wetting and evaporation. Chem. Soc. Rev. 47, 558 (2018).

    CAS  Article  Google Scholar 

  16. 16.

    Y.J. Carreón, M. Rios-Ramírez, R.E. Moctezuma, and J. González-Gutiérrez: Texture analysis of protein deposits produced by droplet evaporation. Sci. Rep. 8, 9580 (2018).

    Article  Google Scholar 

  17. 17.

    H.M. Gorr, J.M. Zueger, and J.A. Barnard: Lysozyme pattern formation in evaporating drops. Langmuir 28, 4039 (2012).

    CAS  Article  Google Scholar 

  18. 18.

    A. Pal, A. Gope, and G.S. Lannacchione: A Comparative Study of the Phase Separation of a Nematic Liquid Crystal in the Self-assembling Drying Protein Drops, Submitted to MRS Advances (Under Review process).

  19. 19.

    M.D. Abramoff, P.J. Magalhaes, and S.J. Ram: Image processing with Image. J. Biophoton. Int. 11, 36 (2004).

    Google Scholar 

  20. 20.

    S. Preibisch, S. Saalfeld, and P. Tomancak: Globally optimal stitching of tiled 3D microscopic image acquisitions. Bioinformatics. 25, 1463 (2009).

    CAS  Article  Google Scholar 

  21. 21.

    J. Jeong, A. Gross, W.S. Wei, F. Tu, D. Lee, P.J. Collings, and A.G. Yodh: Liquid crystal Janus emulsion droplets: preparation, tumbling, and swimming. Soft Matter 11, 6747 (2015).

    CAS  Article  Google Scholar 

  22. 22.

    S. Paul, D. Paul, T. Basova, and A.K. Ray: Studies of adsorption and vis-coelastic properties of proteins onto liquid crystal phthalocyanine surface using quartz crystal microbalance with dissipation technique. J. Phys. Chem. C 112, 11822 (2008).

    CAS  Article  Google Scholar 

  23. 23.

    J. Prost: The Physics of Liquid Crystals (Oxford University Press, New York, USA, 1995), p. 83.

    Google Scholar 

  24. 24.

    W. Singer, T.A. Nieminen, U.J. Gibson, N.R. Heckenberg, and H. Rubinsztein-Dunlop: Orientation of optically trapped nonspherical bire-fringent particles. Phys. Rev. E 73, 021911 (2006).

    Article  Google Scholar 

  25. 25.

    M.F. Islam, M. Nobili, F. Ye, T.C. Lubensky, and A.G. Yodh: Cracks and topological defects in lyotropic nematic gels. Phys. Rev. Lett. 95, 148301 (2005).

    CAS  Article  Google Scholar 

  26. 26.

    J. Zou and J. Fang: Director configuration of liquid-crystal droplets encapsulated by polyelectrolytes. Langmuir 26, 7025 (2009).

    Article  Google Scholar 

  27. 27.

    I.S. Heo and S.Y. Park: Smart shell membrane prepared by microfluidics with reactive nematic liquid crystal mixture. Sens. Actual B. 251, 658 (2017).

    CAS  Article  Google Scholar 

  28. 28.

    T. Ohzono, K. Katoh, C. Wang, A. Fukazawa, S. Yamaguchi, and J.I. Fukuda: Uncovering different states of topological defects in Schlieren textures of a nematic liquid crystal. Sci. Rep. 7, 16814 (2017).

    Article  Google Scholar 

  29. 29.

    M. Gao, X. Huang, and Y. Zhao: Formation of wavy-ring crack in drying droplet of protein solutions. Sci. China Technol. Sci. 61, 949 (2018).

    CAS  Article  Google Scholar 

  30. 30.

    Robert D. Deegan: Pattern formation in drying drops. Phys. Rev. E 61, 475 (2000).

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Germano S. Iannacchione.

Additional information

A video of the time evolution of the drying process is available in Supplementary section.

Supplementary material

Supplementary material

The supplementary material for this article can be found at https://doi.org/10.1557/mrc.2019.18.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Pal, A., Gope, A., Kafle, R. et al. Phase separation of a nematic liquid crystal in the self-assembly of lysozyme in a drying aqueous solution drop. MRS Communications 9, 150–158 (2019). https://doi.org/10.1557/mrc.2019.18

Download citation