Tunable neuronal scaffold biomaterials through plasmonic photo-patterning of aerogels


The authors have shown recently that the neurite extension by neuronal PC12 cells is greatly impacted by aerogel topography. Indeed, the average neurite length of PC-12 cells grown on aerogels is greater than that in cells cultured on control substrates. Here, the authors report on the first experimental study focused on the design and development of a plasmonic photo-patterning technique for collagen-coated mes-oporous aerogel biomaterials. Herein, the authors have produced specific patterns on silica aerogels by performing precise plasmonic photo-patterning on liquid crystal-coated aerogels. The authors report the methodology employed to create a collagen–liquid crystal gel mixture imprinted with precise plasmonic photo-patterns. PC12 cells plated on these patterns did attach and survive and followed the spatial cues of the pattern to align themselves in a similar pattern.

This is a preview of subscription content, access via your institution.

Figure 1
Figure 2
Figure 3
Figure 4


  1. 1.

    M. Hronik-Tupaj, W.K. Raja, M. Tang-Schomer, F.G. Omenetto, and D.L. Kaplan: Neural responses to electrical stimulation on patterned silk films. J. Biomed. Mater. Res. A 101, 2559–2572 (2013).

    Article  Google Scholar 

  2. 2.

    H. Diekmann and D. Fischer: Parthenolide: a novel pharmacological approach to promote nerve regeneration. Neural Regener. Res. 11, 1566–1567 (2016).

    CAS  Article  Google Scholar 

  3. 3.

    D. Hoffman-Kim, J.A. Mitchel, and R.V. Bellamkonda: Topography, cell response, and nerve regeneration. Annu. Rev. Biomed. Eng. 12, 203–231 (2010).

    CAS  Article  Google Scholar 

  4. 4.

    J.Y. Lim and H.J. Donahue: Cell sensing and response to micro-and nanostructured surfaces produced by chemical and topographic patterning. Tissue Eng. 13, 1879–1891 (2007).

    CAS  Article  Google Scholar 

  5. 5.

    K.J. Lynch, O. Skalli, and F. Sabri: Growing neural PC-12 cell on cross-linked silica aerogels increases neurite extension in the presence of an electric field. J. Funct. Biomater. 9, 30 (2018).

    Article  Google Scholar 

  6. 6.

    K.J. Lynch, O. Skalli, and F. Sabri: Investigation of surface topography and stiffness on adhesion and neurites extension of PC12 cells on cross-linked silica aerogel substrates. PLoS One 12 (2017).

    Google Scholar 

  7. 7.

    F. Sabri, M.E. Sebelik, R. Meacham, J.D. Boughter Jr., M.J. Challis, and N. Leventis: In vivo ultrasonic detection of polyurea crosslinked silica aerogel implants. PLoS ONE 8 (2013).

  8. 8.

    F. Sabri, J.D. Boughter Jr., D. Gerth, O. Skalli, T.-C.N. Phung, G.-R.M. Tamula, and N. Leventis: Histological evaluation of the biocompatibility of polyurea crosslinked silica aerogel implants in a rat model: a pilot study. PLoS ONE 7 (2012).

    Google Scholar 

  9. 9.

    F. Sabri, J.A. Cole, M.C. Scarbrough, and N. Leventis: Investigation of polyurea-crosslinked silica aerogels as a neuronal scaffold: a pilot study. PLoS ONE 7 (2012).

    Google Scholar 

  10. 10.

    M. Rodriguez Sala, K.J. Lynch, S. Chandrasekaran, O. Skalli, M. Worsley, and F. Sabri: PC-12 cells adhesion and differentiation on carbon aerogel scaffolds. MRS Commun. 8, 1426–1432 (2018).

    CAS  Article  Google Scholar 

  11. 11.

    J. Hadley, J. Hirschman, B.I. Morshed, and F. Sabri: RF coupling of inter-digitated electrode array on aerogels for in vivo nerve guidance applications. MRS Adv. 4, 1237–1244 (2019).

    CAS  Article  Google Scholar 

  12. 12.

    F. Sabri, D. Gerth, G.-R.M. Tamula, T.-C.N. Phung, K.J. Lynch, and J.D. Boughter Jr.: Novel technique for repair of severed peripheral nerves in rats using polyurea crosslinked silica aerogel scaffold. J. Invest. Surg. 27, 294–303 (2014).

    Article  Google Scholar 

  13. 13.

    J. Beeckman, K. Neyts, and P.J. Vanbrabant: Liquid-crystal photonic applications. Opt. Eng. 50, 081202 (2011).

    Article  Google Scholar 

  14. 14.

    P.F. McManamon, P.J. Bos, M.J. Escuti, J. Heikenfeld, S. Serati, H. Xie, and E.A. Watson: A review of phased array steering for narrow-band elec-trooptical systems. Proc. IEEE 97, 1078 (2009).

    Article  Google Scholar 

  15. 15.

    P. Chen, W. Ji, B.Y. Wei, W. Hu, V. Chigrinov, and Y.Q. Lu: Generation of arbitrary vector beams with liquid crystal polarization converters and vector-photoaligned q-plates. Appl. Phys. Lett. 107, 241102 (2015).

    Article  Google Scholar 

  16. 16.

    B.Y. Wei, W. Hu, Y. Ming, F. Xu, S. Rubin, J.G. Wang, V. Chigrinov, and Y. Q. Lu: Generating switchable and reconfigurable optical vortices via pho-topatterning of liquid crystals. Adv. Mater. 26, 1590 (2014).

    CAS  Article  Google Scholar 

  17. 17.

    D. Iqbal and M.H. Samiullah: Photo-responsive shape-memory and shape-changing liquid-crystal polymer networks. Materials 6, 116 (2013).

    Article  Google Scholar 

  18. 18.

    L.T. de Haan, C. Sánchez‐Somolinos, C.M. Bastiaansen, A.P. Schenning, and D.J. Broer: Engineeringof complex order and the macroscopic deformation of liquid crystal polymer networks. Angew. Chem. 124, 12637 (2012).

    Article  Google Scholar 

  19. 19.

    C. Peng, T. Turiv, R. Zhang, Y. Guo, S.V. Shiyanovskii, Q.H. Wei, J. de Pablo, and O.D. Lavrentovich: Controlling placement of nonspherical (boomerang) colloids in nematic cells with photopatterned director. J. Phys.: Condens. Matter 29, 014005 (2017).

    Google Scholar 

  20. 20.

    C. Peng, Y. Guo, T. Turiv, M. Jiang, Q.H. Wei, and O.D. Lavrentovich: Patterning of lyotropic chromonic liquid crystals by photoalignment with photonic metamasks. Adv. Mater. 29, 1606112 (2017).

    Article  Google Scholar 

  21. 21.

    C. Peng, T. Turiv, Y. Guo, Q.-H. Wei, and O.D. Lavrentovich: Command of active matter by topological defects and patterns. Science 354, 882 (2016).

    CAS  Article  Google Scholar 

  22. 22.

    P. van der Asdonk, H.C. Hendrikse, M. Fernandez-Castano Romera, D. Voerman, B.E.I. Ramakers, D.W.P.M. Löwik, R.P. Sijbesma, and P.H.J. Kouwer: Patterning of soft matter across multiple length scales. Adv. Funct. Mater. 26, 2609 (2016).

    Article  Google Scholar 

  23. 23.

    C. Peng, Y. Guo, C. Conklin, J. Viñals, S.V. Shiyanovskii, Q.-H. Wei, and O. D. Lavrentovich: Liquid crystals with patterned molecular orientation as an electrolytic active medium. Phys. Rev. E 92, 052502 (2015).

    Article  Google Scholar 

  24. 24.

    K. Gao, H.H. Cheng, A.K. Bhowmik, and P.J. Bos: Thin-film Pancharatnam lens with low f-number and high quality. Opt. Express 23, 26086 (2015).

    CAS  Article  Google Scholar 

  25. 25.

    A. Niv, G. Biener, V. Kleiner, and E. Hasman: Propagation-invariant vecto-rial Bessel beams obtained by use of quantized Pancharatnam–Berry phase optical elements. Opt. Lett. 29, 238 (2004).

    Article  Google Scholar 

Download references


F.S. would like to thank the FedEx Institute of Technology for partial financial support. C.P. would like to thank the University of Memphis start-up funds.

Author information



Corresponding authors

Correspondence to Chenhui Peng or Firouzeh Sabri.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Rodriguez Sala, M., Peng, C., Skalli, O. et al. Tunable neuronal scaffold biomaterials through plasmonic photo-patterning of aerogels. MRS Communications 9, 1249–1255 (2019). https://doi.org/10.1557/mrc.2019.143

Download citation