Printable ionizing radiation sensors fabricated from nanoparticulate blends of organic scintillators and polymer semiconductors


This work established the feasibility of flexible solution-processed radiation sensors prepared from an organic scintillator (1-phenyl-3-mesityl-2-pyrazoline) and a biocompatible semiconducting polymer (violanthrone-79). Absorbance, steady-state, and time-resolved photolumines-cence measurements demonstrated a high efficiency for the transfer of absorbed energy from the scintillator to the semiconductor. Blended nanoparticles containing both materials were fabricated in order to reduce the intermolecular distance between molecules, creating a highly efficient energy transfer pathway. Radiation-sensing devices were then constructed from the materials. These exhibited successful sensitivity for gamma radiation from a 137Cs source that was not present for the control semiconducting polymer alone.

This is a preview of subscription content, access via your institution.

Figure 1.
Figure 2.
Figure 3.
Figure 4.


  1. 1.

    A. Owens and A. Peacock: Compound semiconductor radiation detectors. Instrum. Methods Phys. Res. Sect. Accel. Spectrometers Detect. Assoc. Equip 531, 18 (2004).

    CAS  Article  Google Scholar 

  2. 2.

    L. Basirico, A. Ciavatti, T. Cramer, P. Cosseddu, A. Bonfiglio, and B. Fraboni: Direct X-ray photoconversion in flexible organic thin film devices operated below 1V. Nat. Commun 7, 13063 (2016).

    CAS  Article  Google Scholar 

  3. 3.

    B. Fraboni, A. Ciavatti, L. Basiricò, and A. Fraleoni-Morgera: Organic semiconducting single crystals as solid-state sensors for ionizing radiation. Faraday Discuss 174, 219 (2014).

    CAS  Article  Google Scholar 

  4. 4.

    K. Hwang, Y.-S. Jung, Y.-J. Heo, F.H. Scholes, S.E. Watkins, J. Subbiah, D.J. Jones, D.-Y. Kim, and D. Vak: Toward large scale roll-to-roll production of fully printed perovskite solar cells. Adv. Mater 27, 1241 (2015).

    CAS  Article  Google Scholar 

  5. 5.

    T.M. Eggenhuisen, Y. Galagan, A.F.K.V. Biezemans, T.M.W.L. Slaats, W.P. Voorthuijzen, S. Kommeren, S. Shanmugam, J.P. Teunissen, A. Hadipour, W.J.H. Verhees, S.C. Veenstra, M.J.J. Coenen, J. Gilot, R. Andriessen, and W.A. Groen: High efficiency, fully inkjet printed organic solar cells with freedom of design. J. Mater. Chem. A 3, 7255 (2015).

    CAS  Article  Google Scholar 

  6. 6.

    M.J. Griffith, N.A. Cooling, B. Vaughan, D.C. Elkington, A.S. Hart, A.G. Lyons, S. Qureshi, W.J. Belcher, and P.C. Dastoor: Combining printing, coating and vacuum deposition on the roll-to-roll scale: a hybrid organic photovoltaics fabrication. IEEE J. Sel. Topics Quantum Electron 22, 1 (2016).

    Article  Google Scholar 

  7. 7.

    J. Bergqvist, T. Österberg, A. Melianas, L. Ever Aguirre, Z. Tang, W. Cai, Z. Ma, M. Kemerink, D. Gedefaw, M.R. Andersson, and O. Inganäs: Asymmetric photocurrent extraction in semitransparent laminated flexible organic solar cells. Flex. Electron 2, 4 (2018).

    Article  Google Scholar 

  8. 8.

    H. Seyler, S. Haid, T.-H. Kwon, D.J. Jones, P. Bäuerle, A.B. Holmes, and W.W.H. Wong: Continuous flow synthesis of organic electronic materials–case studies in methodology translation and scale-up. Aust. J. Chem 66, 151 (2013).

    CAS  Article  Google Scholar 

  9. 9.

    M.F. Al-Mudhaffer, M.J. Griffith, K. Feron, N.C. Nicolaidis, N.A. Cooling, X. Zhou, J. Holdsworth, W.J. Belcher, and P.C. Dastoor: The origin of performance limitations in miniemulsion nanoparticulate organic photovoltaic devices. Solar Energy Mater. Solar Cells 175, 77 (2018).

    CAS  Article  Google Scholar 

  10. 10.

    D.J. Lipomi and Z. Bao: Stretchable and ultraflexible organic electronics. MRS Bull 42, 93 (2017).

    Article  Google Scholar 

  11. 11.

    M.J. Griffith, N.A. Cooling, D.C. Elkington, E. Muller, W.J. Belcher, and P. C. Dastoor: Printable sensors for explosive detonation. Appl. Phys. Lett 105, 143301 (2014).

    Article  Google Scholar 

  12. 12.

    D. Elkington, M. Wasson, W. Belcher, P.C. Dastoor, and X. Zhou: Printable organic thin film transistors for glucose detection incorporating inkjet-printing of the enzyme recognition element. Appl. Phys. Lett 106, 263301 (2015).

    Article  Google Scholar 

  13. 13.

    C.J. Brabec, G. Zerza, G. Cerullo, S. De Silvestri, S. Luzzati, J.C. Hummelen, and S. Sariciftci: Tracing photoinduced electron transfer process in conjugated polymer/fullerene bulk heterojunctions in real time. Chem. Phys. Lett 340, 232 (2001).

    CAS  Article  Google Scholar 

  14. 14.

    J.A. Rogers, T. Someya, and Y. Huang: Materials and mechanics for stretchable electronics. Science 327, 1603 (2010).

    CAS  Article  Google Scholar 

  15. 15.

    S. Reineke, F. Lindner, G. Schwartz, N. Seidler, K. Walzer, B. Lüssem, and K. Leo: White organic light-emitting diodes with fluorescent tube efficiency. Nature 459, 234 (2009).

    CAS  Article  Google Scholar 

  16. 16.

    M.J. Griffith, M. Willis, P. Kumar, J.L. Holdsworth, H. Bezuidenhout, X. Zhou, W.J. Belcher, and P.C. Dastoor: Activation of organic photovoltaic light detectors using bend leakage from optical fibres. ACS Appl. Mater. Interfaces 8, 7926 (2016).

    Article  Google Scholar 

  17. 17.

    F. Pastorelli, T.M. Schmidt, M. Hösel, R.R. Søndergaard, M. Jørgensen, and F.C. Krebs: The organic power transistor: roll-to-roll manufacture, thermal behavior, and power handling when driving printed electronics. Adv. Eng. Mater. 18, 51 (2016).

    CAS  Article  Google Scholar 

  18. 18.

    N.P. Holmes, M. Marks, J.M. Cave, K. Feron, M.G. Barr, A. Fahy, A. Sharma, X. Pan, D.A.L. Kilcoyne, X. Zhou, D.A. Lewis, M.R. Andersson, J. van Stam, A.B. Walker, E. Moons, W.J. Belcher, and P.C. Dastoor: Engineering two-phase and three-phase microstructures from water-based dispersions of nanoparticles for eco-friendly polymer solar cell applications. Chem. Mater 30, 6521 (2018).

    CAS  Article  Google Scholar 

  19. 19.

    S. Sankaran, K. Glaser, S. Gärtner, T. Rödlmeier, K. Sudau, G. Hernandez-Sosa, and A. Colsmann: Fabrication of polymer solar cells from organic nanoparticle dispersions by doctor blading or ink-jet printing. Org. Electron 28, 118 (2016).

    CAS  Article  Google Scholar 

  20. 20.

    M. Ameri, M. Al-Mudhaffer, F. Almyahi, G.C. Fardell, M. Marks, A. Al-Ahmad, A. Fahy, T. Andersen, D.C. Elkington, K. Feron, P.C. Dastoor, and M.J. Griffith: The role of stabilizing surfactant on capacitance, charge and ion transport in organic nanoparticle-based photdiodes. ACS Appl. Mater. Interfaces 11, 10074 (2019).

    CAS  Article  Google Scholar 

  21. 21.

    S. Lai, P. Cosseddu, L. Basiricò, A. Ciavatti, B. Fraboni, and A. Bonfiglio: A highly sensitive, direct X-ray detector based on a low-voltage organic field-effect transistor. Adv. Electron. Mater 3, 1600409 (2017).

    Article  Google Scholar 

  22. 22.

    A. Intaniwet, C.A. Mills, M. Shkunov, H. Thiem, J.L. Keddie, and P.J. Sellin: Characterization of thick film poly(triarylamine) semiconductor diodes for direct x-ray detection. J. Appl. Phys 106, 064513 (2009).

    Article  Google Scholar 

  23. 23.

    P. Büchele, M. Richter, S.F. Tedde, G.J. Matt, G.N. Ankah, R. Fischer, M. Biele, W. Metzger, S. Lilliu, O. Bikondoa, J.E. Macdonald, C.J. Brabec, T. Kraus, U. Lemmer, and O. Schmidt: X-ray imaging with scintillator-sensitized hybrid organic photodetectors. Nat. Photonics 9, 843 (2015).

    Article  Google Scholar 

  24. 24.

    T. Agostinelli, M. Campoy-Quiles, J.C. Blakesley, R. Speller, D.D.C. Bradley, and J. Nelson: A polymer/fullerene based photodetector with extremely low dark current for x-ray medical imaging applications. Appl. Phys. Lett 93, 20 (2008).

    Article  Google Scholar 

  25. 25.

    J. Oliveira, V. Correia, E. Sowade, I. Etxebarria, R.D. Rodriguez, K.Y. Mitra, R.R. Baumann, and S. Lanceros-Mendez: Indirect X-ray detectors based on inkjet-printed photodetectors with a screen-printed scintillator layer. ACS Appl. Mater. Interfaces 10, 12904 (2018).

    CAS  Article  Google Scholar 

  26. 26.

    R.M. Clegg: Fluorescence resonance energy transfer. Curr. Opin. Biotechnol 6, 103 (1995).

    CAS  Article  Google Scholar 

  27. 27.

    J. R. Lakowicz: Principles of Fluorescence Spectroscopy, 3rd ed. (Springer, USA, 2006).

    Google Scholar 

  28. 28.

    A.M. Brouwer: Standards for photoluminescence quantum yield measurements in solution (IUPAC Technical Report). Pure Appl. Chem 83, 2213 (2011).

    CAS  Article  Google Scholar 

  29. 29.

    H. Dacres, J. Wang, M.M. Dumancic, and S.C. Trowell: Experimental determination of the Förster distance for two commonly used biolumines-cent resonance energy transfer pairs. Anal. Chem 82, 432 (2010).

    CAS  Article  Google Scholar 

  30. 30.

    I.V. Gopich and A. Szabo: Theory of the energy transfer efficiency and fluorescence lifetime distribution in single-molecule FRET. Proc. Natl. Acad. Sci. USA 109, 7747 (2012).

    CAS  Article  Google Scholar 

Download references


Financial support for this work through the University of Newcastle Strategic Investment Award (10.23285) is gratefully acknowledged. The authors thank Dr. Yun Lin and the University of Newcastle Electron Microscopy and X-ray Unit for technical assistance with electron microscopy measurements. This work was performed in part at the Materials node (Newcastle) of the Australian National Fabrication Facility (ANFF), which is a company established under the National Collaborative Research Infrastructure Strategy to provide nanoand microfabrication facilities for Australia’s researchers.

Author information



Corresponding author

Correspondence to Matthew J. Griffith.

Supplementary material

Supplementary material

The supplementary material for this article can be found at

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Anderson, D., Cottam, S., Heim, H. et al. Printable ionizing radiation sensors fabricated from nanoparticulate blends of organic scintillators and polymer semiconductors. MRS Communications 9, 1206–1213 (2019).

Download citation