Redox-active polymers (redoxmers) for electrochemical energy storage

Abstract

Polymer redox-active materials (redoxmers) have numerous applications in the emerging electrochemical energy storage systems due to their structural versatility, fast-cycling ability, high theoretical capacity as electrode materials, sustainability, and recyclability. This review examines recent developments in improving the cycling performance of such materials and provides a vista on the future research directions.

This is a preview of subscription content, access via your institution.

Figure 1
Table I
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

References

  1. 1.

    L. Capuano: International Energy Outlook, 2018 (accessed 7 November).

    Google Scholar 

  2. 2.

    T.M. Gür: Review of electrical energy storage technologies, materials and systems: challenges and prospects for large-scale grid storage. Energ. Environ. Sci. 11, 2696–2767 (2018).

    Article  Google Scholar 

  3. 3.

    W. Wang, Q. Luo, B. Li, X. Wei, L. Li, and Z. Yang: Recent progress in redox flow battery research and development. Adv. Funct. Mater. 23, 970–986 (2013).

    CAS  Article  Google Scholar 

  4. 4.

    Y. Liang, Z. Tao, and J. Chen: Organic electrode materials for rechargeable lithium batteries. Adv. Energy Mater. 2, 742–769 (2012).

    CAS  Article  Google Scholar 

  5. 5.

    S. Muench, A. Wild, C. Friebe, B. Häupler, T. Janoschka, and U.S. Schubert: Polymer-based organic batteries. Chem. Rev. 116, 9438–9484 (2016).

    CAS  Article  Google Scholar 

  6. 6.

    H. Zhang, M. Armand, and T. Rojo: Innovative polymeric materials for better rechargeable batteries: strategies from CIC Energigune. J. Electrochem. Soc. 166, A679–A686 (2019).

    CAS  Article  Google Scholar 

  7. 7.

    Z. Song, Y. Qian, M.L. Gordin, D. Tang, T. Xu, M. Otani, H. Zhan, H. Zhou, and D. Wang: Polyanthraquinone as a reliable organic electrode for stable and fast lithium storage. Angew. Chem. Int. Ed. 54, 13947–13951 (2015).

    CAS  Article  Google Scholar 

  8. 8.

    Y. Sasada, S.J. Langford, K. Oyaizu, and H. Nishide: Poly (norbornyl-NDIs) as a potential cathode-active material in rechargeable charge storage devices. RSC Adv. 6, 42911–42916 (2016).

    CAS  Article  Google Scholar 

  9. 9.

    S. Maniam, K. Oka, and H. Nishide: N-Phenyl naphthalene diimide pendant polymer as a charge storage material with high rate capability and cyclability. MRS Commun. 7, 967–973 (2017).

    CAS  Article  Google Scholar 

  10. 10.

    T.B. Schon, A.J. Tilley, E.L. Kynaston, and D.S. Seferos: Three-dimensional arylene diimide frameworks for highly stable lithium ion batteries. ACS Appl. Mater. Inter. 9, 15631–15637 (2017).

    CAS  Article  Google Scholar 

  11. 11.

    H. Tokue, T. Murata, H. Agatsuma, H. Nishide, and K. Oyaizu: Charge–discharge with rocking-chair-type Li+ migration characteristics in a zwitter-ionic radical copolymer composed of TEMPO and trifluoromethanesulfonylimide with carbonate electrolytes for a high-rate Li-ion battery. Macromolecules 50, 1950–1958 (2017).

    CAS  Article  Google Scholar 

  12. 12.

    T. Suga, H. Konishi, and H. Nishide: Photocrosslinked nitroxide polymer cathode-active materials for application in an organic-based paper battery. Chem. Comm. 1730–1732 (2007).

    Google Scholar 

  13. 13.

    C. Karlsson, T. Suga, and H. Nishide: Quantifying TEMPO redox polymer charge transport toward the organic radical battery. ACS Appl. Mater. Inter. 9, 10692–10698 (2017).

    CAS  Article  Google Scholar 

  14. 14.

    K. Koshika, N. Chikushi, N. Sano, K. Oyaizu, and H. Nishide: A TEMPO-substituted polyacrylamide as a new cathode material: an organic rechargeable device composed of polymer electrodes and aqueous electrolyte. Green Chem. 12, 1573–1575 (2010).

    CAS  Article  Google Scholar 

  15. 15.

    G. Li, B. Zhang, J. Wang, H. Zhao, W. Ma, L. Xu, W. Zhang, K. Zhou, Y. Du, and G. He: Electrochromic poly(chalcogenoviologen)s as anode materials for high-performance organic radical lithiumion batteries. Angew. Chem. Int. Ed 58, 8468–8473 (2019).

    CAS  Article  Google Scholar 

  16. 16.

    N. Casado, G. Hernández, A. Veloso, S. Devaraj, D. Mecerreyes, and M. Armand: PEDOT radical polymer with synergetic redox and electrical properties. ACS Macro Lett. 5, 59–64 (2016).

    CAS  Article  Google Scholar 

  17. 17.

    I. Aldalur, M. Martinez-Ibañez, M. Piszcz, H. Zhang, and M. Armand: Self-standing highly conductive solid electrolytes based on block copol-ymers for rechargeable all-solid-state lithium-metal batteries. Batteries Supercaps 1, 149–159 (2018).

    CAS  Article  Google Scholar 

  18. 18.

    L. Xing, W. Li, C. Wang, F. Gu, M. Xu, C. Tan, and J. Yi: Theoretical investigations on oxidative stability of solvents and oxidative decomposition mechanism of ethylene carbonate for lithium ion battery use. J. Phys. Chem. B 113, 16596–16602 (2009).

    CAS  Article  Google Scholar 

  19. 19.

    S. Grugeon, P. Jankowski, D. Cailleu, C. Forestier, L. Sannier, M. Armand, P. Johansson, and S. Laruelle: Towards a better understanding of vinyl-ene carbonate derived SEI-layers by synthesis of reduction compounds. J. Power Sources 427, 77–84 (2019).

    CAS  Article  Google Scholar 

  20. 20.

    G.-L. Xu, Q. Liu, K.K.S. Lau, Y. Liu, X. Liu, H. Gao, X. Zhou, M. Zhuang, Y. Ren, J. Li, M. Shao, M. Ouyang, F. Pan, Z. Chen, K. Amine, and G. Chen: Building ultraconformal protective layers on both secondary and primary particles of layered lithium transition metal oxide cathodes. Nat. Energy 4, 484–494 (2019).

    CAS  Article  Google Scholar 

  21. 21.

    D. Zhou, Y. Chen, B. Li, H. Fan, F. Cheng, D. Shanmukaraj, T. Rojo, M. Armand, and G. Wang: A stable quasi-solid-state sodium–sulfur battery. Angew. Chem. 130, 1032–10329 (2018).

    Google Scholar 

  22. 22.

    E. Castillo-Martínez, J. Carretero-González, and M. Armand: Polymeric schiff bases as low-voltage redox centers for sodium-ion batteries. Angew. Chem. Int. Ed. 53, 5341–5345 (2014).

    Article  CAS  Google Scholar 

  23. 23.

    Q. Zhao, R.R. Gaddam, D. Yang, E. Strounina, A.K. Whittaker, and X.S. Zhao: Pyromellitic dianhydride-based polyimide anodes for sodium-ion batteries. Electrochim. Acta 265, 702–708 (2018).

    CAS  Article  Google Scholar 

  24. 24.

    T. Bancic, J. Bitenc, K. Pirnat, A. Kopac Lautar, J. Grdadolnik, A. Randon Vitanova, and R. Dominko: Electrochemical performance and redox mechanism of naphthalene-hydrazine diimide polymer as a cathode in magnesium battery. J. Power Sources 395, 2–30 (2018).

    Article  CAS  Google Scholar 

  25. 25.

    A. Vizintin, J. Bitenc, A. Kopac Lautar, K. Pirnat, J. Grdadolnik, J. Stare, A. Randon-Vitanova, and R. Dominko: Probing electrochemical reactions in organic cathode materials via in operando infrared spectroscopy. Nat. Comm. 9, 661 (2018).

    Article  CAS  Google Scholar 

  26. 26.

    B. Pan, J. Huang, Z. Feng, L. Zeng, M. He, L. Zhang, J.T. Vaughey, M.J. Bedzyk, P. Fenter, Z. Zhang, A.K. Burrell, and C. Liao: Polyanthraquinone-based organic cathode for high-performance rechargeable magnesium-ion batteries. Adv. Energy Mater. 6,1600140 (2016).

    Article  CAS  Google Scholar 

  27. 27.

    H. Dong, Y. Liang, O. Tutusaus, R. Mohtadi, Y. Zhang, F. Hao, and Y. Yao: Directing Mg-storage chemistry in organic polymers toward high-energy Mg batteries. Joule3, 782–793 (2019).

    Google Scholar 

  28. 28.

    A.G. Simmonds, J.J. Griebel, J. Park, K.R. Kim, W.J. Chung, V.P. Oleshko, J. Kim, E.T. Kim, R.S. Glass, C.L Soles, Y.-E. Sung, K. Char, and J. Pyun: Inverse vulcanization of elemental sulfur to prepare polymeric electrode materials for Li-S batteries. ACS Macro Lett. 3, 229–232 (2014).

    CAS  Article  Google Scholar 

  29. 29.

    P.T. Dirlam, A.G. Simmonds, T.S. Kleine, N.A. Nguyen, L.E. Anderson, A. O. Klever, A. Florian, P.J. Costanzo, P. Theato, M.E. Mackay, R.S. Glass, K. Char, and J. Pyun: Inverse vulcanization of elemental sulfur with 1,4-diphenylbutadiyne for cathode materials in Li-S batteries. RSCAdv. 5, 24718–24722 (2015).

    CAS  Google Scholar 

  30. 30.

    Y. Wei, X. Li, Z. Xu, H. Sun, Y. Zheng, L. Peng, Z. Liu, C. Gao, and M. Gao: Solution processible hyperbranched inverse-vulcanized polymers as new cathode materials in Li-S batteries. Polym. Chem. 6, 973–982 (2015).

    CAS  Article  Google Scholar 

  31. 31.

    Z.J. Liu, L.B. Kong, Y.H. Zhou, and C.M. Zhan: Polyanthra[1,9,8-b,c,d,e] [4,10,5-b,c,d,e]bis-[1,6,6a(6a-S) trithia]pentalene-active material for cathode of lithium secondary battery with unusually high specific capacity. J. Power Sources 161, 1302–1306 (2006).

    CAS  Article  Google Scholar 

  32. 32.

    M.B. Preefer, B. Oschmann, C.J. Hawker, R. Seshadri, and F. Wudl: High sulfur content material with stable cycling in lithium-sulfur batteries. Angew. Chem. Int. Ed. 56, 15118–15122 (2017).

    CAS  Article  Google Scholar 

  33. 33.

    Y. Liu, A.K. Haridas, K.-K. Cho, Y. Lee, and J.-H. Ahn: Highly ordered mesoporous sulfurized polyacrylonitrile cathode material for high-rate lithium sulfur batteries. J. Phys. Chem. C121, 26172–26179 (2017).

    Google Scholar 

  34. 34.

    J.C. Bachman, R. Kavian, D.J. Graham, D.Y. Kim, S. Noda, D.G. Nocera, Y. Shao-Horn, and S.W. Lee: Electrochemical polymerization of pyrene derivatives on functionalized carbon nanotubes for pseudocapacitive electrodes. Nat. Commun. 6, 7040 (2015).

    Article  Google Scholar 

  35. 35.

    Y. Xu, Z. Lin, X. Huang, Y. Wang, Y. Huang, and X. Duan: Functionalized graphene hydrogel-based high-performance supercapacitors. Adv. Mater. 25, 5779–5784 (2013).

    CAS  Article  Google Scholar 

  36. 36.

    K. Oka, R. Kato, K. Oyaizu, and H. Nishide: Poly(vinyldibenzothiophene-sulfone): its redox capability at very negative potential toward an all-organic rechargeable device with high-energy density. Adv. Funct. Mater. 28, 1805858 (2018).

    Article  CAS  Google Scholar 

  37. 37.

    J. Xie, Z.L. Wang, Z.C.J. Xu, and Q.C. Zhang: Toward a high-performance all-plastic full battery with a single organic polymer as both cathode and anode. Adv. Energy Mater. 8, 1703509 (2018).

    Article  CAS  Google Scholar 

  38. 38.

    K. Nakahara, S. Iwasa, M. Satoh, Y. Morioka, J. Iriyama, M. Suguro, and E. Hasegawa: Rechargeable batteries with organic radical cathodes. Chem. Phys. Lett. 359, 351–354 (2002).

    CAS  Article  Google Scholar 

  39. 39.

    H. Zhang, G.G. Eshetu, X. Judez, C. Li, L.M. Rodriguez-Martínez, and M. Armand: Electrolyte additives for lithium metal anodes and rechargeable lithium metal batteries: progress and perspectives. Angew. Chem. Int. Ed. 57, 15002–15027 (2018).

    CAS  Article  Google Scholar 

  40. 40.

    A.T. Appapillai, A.N. Mansour, J. Cho, and Y. Shao-Horn: Microstructure of LiCoO2 with and without “AlPO4” nanoparticle coating: combined STEM and XPS studies. Chem. Mater. 19, 5748–5757 (2007).

    CAS  Article  Google Scholar 

  41. 41.

    X. Li, J. Liu, M.N. Banis, A. Lushington, R. Li, M. Cai, and X. Sun: Atomic layer deposition of solid-state electrolyte coated cathode materials with superior high-voltage cycling behavior for lithium ion battery application. Energ. Environ. Sci. 7, 768–778 (2014).

    CAS  Article  Google Scholar 

  42. 42.

    K.-S. Lee, S.-T. Myung, K. Amine, H. Yashiro, and Y.-K. Sun: Dual functioned BiOF-coated Li[Li0.1Al005Mn1 85]O4 for lithium batteries. J. Mater. Chem. 19, 1995–2005 (2009).

    CAS  Article  Google Scholar 

  43. 43.

    P. Yan, J. Zheng, T. Chen, L. Luo, Y. Jiang, K. Wang, M. Sui, J.-G. Zhang, S. Zhang, and C. Wang: Coupling of electrochemically triggered thermal and mechanical effects to aggravate failure in a layered cathode. Nat Commun. 9, 2437 (2018).

    Article  CAS  Google Scholar 

  44. 44.

    M.D. Slater, D. Kim, E. Lee, and C.S. Johnson: Sodium-ion batteries. Adv. Funct. Mater. 23, 947–958 (2013).

    CAS  Article  Google Scholar 

  45. 45.

    P. Canepa, S.-H. Bo, G. Sai Gautam, B. Key, W.D. Richards, T. Shi, Y. Tian, Y. Wang, J. Li, and G. Ceder: High magnesium mobility in ternary spinel chalcogenides. Nat. Chem. 8, 1759 (2017).

    Google Scholar 

  46. 46.

    J.T. Incorvati, L.F. Wan, B. Key, D. Zhou, C. Liao, L. Fuoco, M. Holland, H. Wang, D. Prendergast, K.R. Poeppelmeier, and J.T. Vaughey: Reversible magnesium intercalation into a layered oxyfluoride cathode. Chem. Mater. 28, 17–20 (2016).

    CAS  Article  Google Scholar 

  47. 47.

    C. Yu, C. Wang, X. Liu, X. Jia, S. Naficy, K. Shu, M. Forsyth, and G.G. Wallace: A cytocompatible robust hybrid conducting polymer hydrogel for use in a magnesium battery. Adv. Mater. 28, 9349–9355 (2016).

    CAS  Article  Google Scholar 

  48. 48.

    X. Jia, C. Wang, V. Ranganathan, B. Napier, C. Yu, Y. Chao, M. Forsyth, F. G. Omenetto, D.R. MacFarlane, and G.G. Wallace: A biodegradable thin-film magnesium primary battery using silk fibroin–ionic liquid polymer electrolyte. ACS Energy Lett. 2, 831–836 (2017).

    CAS  Article  Google Scholar 

  49. 49.

    P.G. Bruce, S.A. Freunberger, L.J. Hardwick, and J.-M. Tarascon: Li–O2 and Li–S batteries with high energy storage. Nat. Mater. 11, 19 (2011).

    Article  CAS  Google Scholar 

  50. 50.

    B.C. Melot and J.M. Tarascon: Design and preparation of materials for advanced electrochemical storage. Acc. Chem. Rev. 46, 1226–1238 (2013).

    CAS  Article  Google Scholar 

  51. 51.

    X. Ji and L.F. Nazar: Advances in Li–S batteries. J. Mater. Chem. 20, 9821–9826 (2010).

    CAS  Article  Google Scholar 

  52. 52.

    K. Kang, Y.S. Meng, J. Bréger, C.P. Grey, and G. Ceder: Electrodes with high power and high capacity for rechargeable lithium batteries. Science 311, 977–980 (2006).

    CAS  Article  Google Scholar 

  53. 53.

    Y.V. Mikhaylik and J.R. Akridge: Polysulfide shuttle study in the Li/S battery system. J. Electrochem. Soc. 151, A1969–A1976 (2004).

    CAS  Article  Google Scholar 

  54. 54.

    X. Liang, C. Hart, Q. Pang, A. Garsuch, T. Weiss, and L.F. Nazar: A highly efficient polysulfide mediator for lithium–sulfur batteries. Nat. Commun. 6, 5682 (2015).

    Article  Google Scholar 

  55. 55.

    W. Xu, J. Wang, F. Ding, X. Chen, E. Nasybulin, Y. Zhang, and J.-G. Zhang: Lithium metal anodes for rechargeable batteries. Energ. Environ. Sci. 7, 513–537 (2014).

    CAS  Article  Google Scholar 

  56. 56.

    B. Liu, J.-G. Zhang, and W. Xu: Advancing lithium metal batteries. Joule 2, 833–845 (2018).

    CAS  Article  Google Scholar 

  57. 57.

    X. Yu and A. Manthiram: Electrode–electrolyte interfaces in lithium-based batteries. Energ. Environ. Sci. 11, 527–543 (2018).

    CAS  Article  Google Scholar 

  58. 58.

    X. Ji, K.T. Lee, and L.F. Nazar: A highly ordered nanostructured carbon–sulphur cathode for lithium–sulphur batteries. Nat. Mater. 8, 500 (2009).

    CAS  Article  Google Scholar 

  59. 59.

    H. Wei, E.F. Rodriguez, A.S. Best, A.F. Hollenkamp, D. Chen, and R.A. Caruso: Chemical bonding and physical trapping of sulfur in mesoporous magnéli Ti4O7 microspheres for high-performance Li–S battery. Adv. Energy Mater. 7, 1601616 (2017).

    Article  CAS  Google Scholar 

  60. 60.

    D. Lei, K. Shi, H. Ye, Z. Wan, Y. Wang, L. Shen, B. Li, Q.-H. Yang, F. Kang, and Y.-B. He: Progress and perspective of solid-state lithium–sulfur batteries. Adv. Funct. Mater. 28, 1707570 (2018).

    Article  CAS  Google Scholar 

  61. 61.

    M.J. Lacey, F. Jeschull, K. Edström, and D. Brandell: Porosity blocking in highly porous carbon black by PVdF binder and its implications for the Li–S system. J. Phys. Chem. C 118, 25890–25898 (2014).

    CAS  Article  Google Scholar 

  62. 62.

    Z. Cheng, H. Pan, H. Zhong, Z. Xiao, X. Li, and R. Wang: Porous organic polymers for polysulfide trapping in lithium–sulfur batteries. Adv. Funct. Mater. 28, 1707597 (2018).

    Article  CAS  Google Scholar 

  63. 63.

    H. Schneider, A. Garsuch, A. Panchenko, O. Gronwald, N. Janssen, and P. Novák: Influence of different electrode compositions and binder materials on the performance of lithium–sulfur batteries. J. Power Sources 205, 420–425 (2012).

    CAS  Article  Google Scholar 

  64. 64.

    W.J. Chung, J.J. Griebel, E.T. Kim, H. Yoon, A.G. Simmonds, H.J. Ji, P.T. Dirlam, R.S. Glass, J.J. Wie, N.A. Nguyen, B.W. Guralnick, J. Park, Á Somogyi, P. Theato, M.E. Mackay, Y.-E. Sung, K. Char, and J. Pyun: The use of elemental sulfur as an alternative feedstock for polymeric materials. Nat. Chem. 5, 518 (2013).

    CAS  Article  Google Scholar 

  65. 65.

    J.J. Griebel, G. Li, R.S. Glass, K. Char, and J. Pyun: Kilogram scale inverse vulcanization of elemental sulfur to prepare high capacity polymer electrodes for Li-S batteries. J. Polym. Sci. Pol. Chem. 53, 173–177 (2015).

    CAS  Article  Google Scholar 

  66. 66.

    B. Oschmann, J. Park, C. Kim, K. Char, Y.-E. Sung, and R. Zentel: Copolymerization of polythiophene and sulfur to improve the electrochemical performance in lithium–sulfur batteries. Chem. Mater. 27, 7011–7017 (2015).

    CAS  Article  Google Scholar 

  67. 67.

    F. Wu, S. Chen, V. Srot, Y. Huang, S.K. Sinha, P.A. van Aken, J. Maier, and Y. Yu: A sulfur–limonene-based electrode for lithium–sulfur batteries: high-performance by self-protection. Adv. Mater. 30, 1706643 (2018).

    Article  CAS  Google Scholar 

  68. 68.

    H. Berk, B. Balci, S. Ertan, M. Kaya, and A. Cihaner: Functionalized poly-sulfide copolymers with 4-vinylpyridine via inverse vulcanization. Mater. Today Commun. 19, 336–341 (2019).

    CAS  Article  Google Scholar 

  69. 69.

    M.M. Doeff, M.M. Lerner, S.J. Visco, and L.C. De Jonghe: The use of pol-ydisulfides and copolymeric disulfides in the Li/PEO/SRPE battery system. J. Electrochem. Soc. 139, 2077–2081 (1992).

    CAS  Article  Google Scholar 

  70. 70.

    H. Kim, J. Lee, H. Ahn, O. Kim, and M.J. Park: Synthesis of three-dimensionally interconnected sulfur-rich polymers for cathode materials of high-rate lithium–sulfur batteries. Nat. Commun. 6, 7278 (2015).

    CAS  Article  Google Scholar 

  71. 71.

    B.A. Trofimov, A.M. Vasil’tsov, O.V. Petrova, A.I. Mikhaleva, G.F. Myachina, S.A. Korzhova, T.A. Skotheim, Y.V. Mikhailik, and T.I. Vakul’skaya: Sulfurization of polymers. 6. Poly(vinylene polysulfide), poly(thienothiophene), and related structures from polyacetylene and elemental sulfur. Russ. Chem. Bull. 51, 1709–1714 (2002).

    CAS  Article  Google Scholar 

  72. 72.

    J. Fanous, M. Wegner, J. Grimminger, Ä Andresen, and M.R. Buchmeiser: Structure-related electrochemistry of sulfur-poly(acrylonitrile) composite cathode materials for rechargeable lithium batteries. Chem. Mater. 23, 5024–5028 (2011).

    CAS  Article  Google Scholar 

  73. 73.

    S. Wei, L. Ma, K.E. Hendrickson, Z. Tu, and L.A. Archer: Metal–sulfur battery cathodes based on PAN–sulfur composites. J. Am. Chem. Soc. 137, 12143–12152 (2015).

    CAS  Article  Google Scholar 

  74. 74.

    K.-C. Lau, I.A. Shkrob, N.L. Dietz Rago, J.G. Connell, D. Phelan, B. Hu, L. Zhang, Z. Zhang, and C. Liao: Improved performance through tight coupling of redox cycles of sulfur and 2,6-polyanthraquinone in lithium–sulfur batteries. J. Mater. Chem. A 5, 24103–24109 (2017).

    CAS  Article  Google Scholar 

  75. 75.

    C.R. DeBlase, K.E. Silberstein, T.-T. Truong, H.D. Abruña, and W.R. Dichtel: β-Ketoenamine-linked covalent organic frameworks capable of pseudocapacitive energy storage. J. Am. Chem. Soc. 135, 16821–16824 (2013).

    CAS  Article  Google Scholar 

  76. 76.

    D.F. Zeigler, S.L. Candelaria, K.A. Mazzio, T.R. Martin, E. Uchaker, S.-L. Suraru, L.J. Kang, G. Cao, and C.K. Luscombe: N-Type hyperbranched polymers for supercapacitor cathodes with variable porosity and excellent electrochemical stability. Macromolecules 48, 5196–5203 (2015).

    CAS  Article  Google Scholar 

  77. 77.

    H. Zhou, X. Zhi, and H.-J. Zhai: Promoted supercapacitive performances of electrochemically synthesized poly(3,4-ethylenedioxythiophene) incorporated with manganese dioxide. J. Mater. Sci. Mater. Elect. 29, 3935–3942 (2018).

    CAS  Article  Google Scholar 

  78. 78.

    H. Zhou, H.-J. Zhai, and G. Han: Superior performance of highly flexible solid-state supercapacitor based on the ternary composites of graphene oxide supported poly(3,4-ethylenedioxythiophene)-carbon nanotubes. J. Power Sources 323, 12–133 (2016).

    Article  CAS  Google Scholar 

  79. 79.

    K. Hatakeyama-Sato, H. Wakamatsu, K. Yamagishi, T. Fujie, S. Takeoka, K. Oyaizu, and H. Nishide: Ultrathin and stretchable rechargeable devices with organic polymer nanosheets conformable to skin surface. Small 15, 1805296 (2019).

    Article  CAS  Google Scholar 

  80. 80.

    X. Zhu, R. Zhao, W. Deng, X. Ai, H. Yang, and Y. Cao: An all-solid-state and all-organic sodium-ion battery based on redox-active polymers and plastic crystal electrolyte. Electrochim. Acta 178, 5–59 (2015).

    Google Scholar 

  81. 81.

    Y. Weng, S. Xu, G. Huang, and C. Jiang: Synthesis and performance of Li [(Ni1/3Co1/3Mn1/3)1-xMgx]O2 prepared from spent lithium ion batteries. J. Hazard. Mater. 246–247, 163–172 (2013).

    Article  CAS  Google Scholar 

  82. 82.

    Y. Yang, G. Huang, S. Xu, Y. He, and X. Liu: Thermal treatment process for the recovery of valuable metals from spent lithium-ion batteries. Hydrometallurgy 165, 390–396 (2016).

    CAS  Article  Google Scholar 

  83. 83.

    T. Zhang, Y. He, F. Wang, L. Ge, X. Zhu, and H. Li: Chemical and process mineralogical characterizations of spent lithium-ion batteries: an approach by multi-analytical techniques. Waste Manage. 34, 1051–1058 (2014).

    Article  CAS  Google Scholar 

  84. 84.

    H. Chen, M. Armand, G. Demailly, F. Dolhem, P. Poizot, and J.-M. Tarascon: From biomass to a renewable LiXC6O6 organic electrode for sustainable Li-ion batteries. ChemSusChem 1, 348–355 (2008).

    CAS  Article  Google Scholar 

  85. 85.

    M. Armand, and J.M. Tarascon: Building better batteries. Nature 451, 652 (2008).

    CAS  Article  Google Scholar 

  86. 86.

    A. Hoefling, Y.J. Lee, and P. Theato: Sulfur-based polymer composites from vegetable oils and elemental sulfur: a sustainable active material for Li–S batteries. Macromol. Chem. Phys. 218, 1600303 (2017).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported as part of the Joint Center for Energy Storage Research, an Energy Innovation Hub funded by the U. S. Department of Energy, Office of Science, Basic Energy Sciences. The submitted manuscript has been created by UChicago Argonne, LLC, Operator of Argonne National Laboratory (“Argonne”). Argonne, a U.S. Department of Energy Office of Science laboratory, is operated under Contract No. DE-AC02-06CH11357.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Chen Liao.

Additional information

Both authors contributed equally.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yang, M., Liu, K., Shkrob, I.A. et al. Redox-active polymers (redoxmers) for electrochemical energy storage. MRS Communications 9, 1151–1167 (2019). https://doi.org/10.1557/mrc.2019.122

Download citation