Elastomer-based MEMS optical interferometric transducers for highly sensitive surface stress sensing for biomolecular detection


We developed a microelectromechanical-system optical interferometer based on an elastomer nanosheet using a polystyrene-polybutadiene-polystyrene (SBS) triblock copolymer for a suspended membrane as a way to improve the stress sensitivity for surface stress detection. The elastomeric SBS nanosheet provides a low Young’s modulus of 28 ±11 MPa, a large elastic strain of 24 ±12%, and high adhesiveness, of which the surface charge and mechanical property are tunable by layer-by-layer (LbL) deposition of polysaccharides. A freestanding SBS nanosheet can be formed above a microcavity using a dry transfer technique without applying vacuum or high-temperature processes. The maximum deflection associated with molecular adsorption increased by sevenfold compared with a parylene-C-based optical interferometric transducer.

This is a preview of subscription content, access via your institution.

Figure 1
Figure 2
Table I
Figure 3
Figure 4
Figure 5


  1. 1.

    M. Esashi and T. Matsuo: Integrated micro multi ¡on sensor using field effect of semiconductor. IEEE Trans. Biomed. Eng. BME 25, 184 (1978).

    CAS  Article  Google Scholar 

  2. 2.

    K. Sawada, S. Mimura, K. Tomita, T. Nakanishi, H. Tanabe, M. Ishida, and T. Ando: Novel CCD-based pH imaging sensor. IEEE Trans. Electron Devices 46, 1846 (1999).

    CAS  Article  Google Scholar 

  3. 3.

    T. Sakata, M. Kamahori, and Y. Miyahara: Immobilization of oligonucleotide probes on Si3N4 surface and its application to genetic field effect transistor. Mater. Sci. Eng. C 24, 827 (2004).

    Article  Google Scholar 

  4. 4.

    Y. Ohno, K. Maehashi, K. Inoue, and K. Matsumoto: Label-free aptamer-based immunoglobulin sensors using graphene field-effect transistor. Jpn. J. Appl. Phys. 50, 070120 (2011).

    Article  Google Scholar 

  5. 5.

    T. Sakata and Y. Miyahara: Direct transduction of allele-specific primer extension into electrical signal using genetic field effect transistor. Biosens. Bloelectron. 22, 1311 (2007).

    CAS  Article  Google Scholar 

  6. 6.

    D. A. Raorane, M. D. Lim, F. F. Chen, C. S. Craik, and A. Majumdar: Quantitative and label-free technique for measuring protease activity and inhibition using a microfluidic cantilever array. Nano Lett. 8, 2968 (2008).

    CAS  Article  Google Scholar 

  7. 7.

    M. Watari, J. Galbraith, H.-P. Lang, M. Sousa, M. Hegner, C. Gerber, M. A. Horton, and R. A. McKendry: Investigating the molecular mechanisms of in-plane mechanochemistry on cantilever arrays. J. Am. Chem. Soc. 129, 601 (2007).

    CAS  Article  Google Scholar 

  8. 8.

    J. Fritz, M. K. Bailer, H. P. Lang, H. Rothuizen, P. Vettiger, E. Meyer, H. J. Guntherodt, C. Gerber, and J. K. Gimzewski: Translating biomolecular recognition into nanomechanics. Science 288, 316 (2000).

    CAS  Article  Google Scholar 

  9. 9.

    J. Zhang, H. P. Lang, F. Huber, A. Bietsch, W. Grange, U. Certa, R. McKendry, H.-J. Guntherodt, M. Hegner, and C. Gerber: Rapid and label-free nanomechanical detection of biomarker transcripts in human RNA. Nat. Nanotechnol. 1, 214 (2006).

    CAS  Article  Google Scholar 

  10. 10.

    G. H. Wu, R. H. Datar, K. M. Hansen, T. Thundat, R. J. Cote, and A. Majumdar: Bioassay of prostate-specific antigen (PSA) using micro-cantilevers. Nat. Biotechnol. 19, 856 (2001).

    CAS  Article  Google Scholar 

  11. 11.

    P. V. Gorelkin, A. S. Erofeev, G. A. Kiselev, D. V. Kolesov, E. V. Dubrovin, and I. V. Yaminsky: Synthetic sialylglycopolymer receptor for virus detection using cantilever-based sensors. Analyst 140, 6131 (2015).

    CAS  Article  Google Scholar 

  12. 12.

    R. Berger, E. Delamarche, H. P. Lang, C. Gerber, J. K. Gimzewski, E. Meyer, and H. J. Guntherodt: Surface stress in the self-assembly of alkanethiols on gold. Science 276, 2021 (1997).

    CAS  Article  Google Scholar 

  13. 13.

    M. K. Ghatkesar, H. P. Lang, C. Gerber, M. Hegner, and T. Braun: Comprehensive characterization of molecular interactions based on nano-mechanics. PLoS One 3, e3610 (2008).

    Article  Google Scholar 

  14. 14.

    K. Buchapudi, X. Xu, Y. Ataian, H.-F. Ji, and M. Schulte: Micromechanical measurement of AChBP binding for label-free drug discovery. Analyst 137, 263 (2012).

    CAS  Article  Google Scholar 

  15. 15.

    S. Satyanarayana, D. T. McCormick, and A. Majumdar: Parylene micro membrane capacitive sensor array for chemical and biological sensing. Sens. Actuators, B 115, 494 (2006).

    CAS  Article  Google Scholar 

  16. 16.

    K. W. Wee, G. Y. Kang, J. Park, J. Y. Kang, D. S. Yoon, J. H. Park, and T. S. Kim: Novel electrical detection of label-free disease marker proteins using piezoresistive self-sensing micro-cantilever. Biosens. Bioelectron. 20, 1932 (2005).

    CAS  Article  Google Scholar 

  17. 17.

    G. Yoshikawa, T. Akiyama, S. Gautsch, P. Vettiger, and H. Rohrer: Nanomechanical membrane-type surface stress sensor. Nano Lett. 11, 1044 (2011).

    CAS  Article  Google Scholar 

  18. 18.

    J. L. Arlett, E. B. Myers, and M. L. Roukes: Comparative advantages of mechanical biosensors. Nat. Nanotechnol. 6, 203 (2011).

    CAS  Article  Google Scholar 

  19. 19.

    K. Takahashi, H. Oyama, N. Misawa, K. Okumura, M. Ishida, and K. Sawada: Surface stress sensor using MEMS-based Fabry-Perot interferometer for label-free biosensing. Sens. Actuators, B 188, 393 (2013).

    CAS  Article  Google Scholar 

  20. 20.

    S. Maruyama, T. Hizawa, K. Takahashi, and K. Sawada: Optical-interfer-ometry-based CMOS-MEMS sensor transduced by stress induced nanomechanical deflection. Sensors 18(1), 138 (2018).

    Article  Google Scholar 

  21. 21.

    T. Takahashi, T. Hizawa, N. Misawa, M. Taki, K. Sawada, and K. Takahashi: Surface stress sensor based on MEMS Fabry-Perot interferometer with high wavelength selectivity for label-free biosensing. J. Micromech. Microeng. 28, 054002 (2018).

    Article  Google Scholar 

  22. 22.

    N. Sato, A. Murata, T. Fujie, and S. Takeoka: Stretchable, adhesive and ultra-conformable elastomer thin films. Soft Matter 12, 9202 (2016).

    CAS  Article  Google Scholar 

  23. 23.

    T. Fujie, N. Matsutani, M. Kinoshita, Y. Okamura, A. Saito, and S. Takeoka: Adhesive, flexible, and robust polysaccharide nanosheets integrated for tissue-defect repair. Adv. Funct. Mater. 19, 2560 (2009).

    CAS  Article  Google Scholar 

  24. 24.

    T. Fujie: Development of free-standing polymer nanosheets for advanced medical and health-care applications. Polym. J. 48, 773 (2016).

    CAS  Article  Google Scholar 

  25. 25.

    H. Kumagai, N. Sato, S. Takeoka, K. Sawada, T. Fujie, and K. Takahashi: Optomechanical characterization of freestanding stretchable nanosheet based on polystyrene-polybutadiene-polystyrene copolymer. Appl. Phys. Express 10, 011601 (2017).

    Article  Google Scholar 

  26. 26.

    K. Takahashi, T. Fujie, N. Sato, S. Takeoka, and K. Sawada: MEMS optical interferometry-based pressure sensor using elastomer nanosheet developed by dry transfer technique. Jpn. J. Appl. Phys. 57, 010302 (2008).

    Article  Google Scholar 

  27. 27.

    J. Fritz: Cantilever biosensors. Analysing, 855 (2008).

    Google Scholar 

  28. 28.

    M. Schmidt, B. Werther, N. Furstenau, M. Matthias, and T. Melz: Fiberoptic extrinsic Fabry-Perot interferometer strain sensor with <50 pm displacement resolution using three-wavelength digital phase demodulation. Opt. Express 8, 475 (2001).

    CAS  Article  Google Scholar 

  29. 29.

    S. Ge, K. Kojio, A. Takahara, and T. Kajiyama: Bovine serum albumin adsorption onto immobilized organotrichlorosilane surface: Influence of the phase separation on protein adsorption patterns. J. Biomater. Sci. Polym. Ed. 9, 131 (1998).

    CAS  Article  Google Scholar 

Download references


This work was supported in part by a Grant-in-Aid for Young Scientists (A) (26709025), Grant-in-Aid for Scientific Research (B) (18H03539), and Grant-in-Aid for Scientific Research on Innovative Areas (18H05469) from the Japan Society for the Promotion of Science, and by the Precursory Research for Embryonic Science and Technology (PRESTO) (JPMJPR1526 and JPMJPR152A) from the Japan Science and Technology Agency.

Author information



Corresponding authors

Correspondence to Kazuhiro Takahashi or Toshinori Fujie.

Additional information

This author was an editor of this journal during the review and decision stage. For the JMR policy on review and publication of manuscripts authored by editors, please refer to http://www.mrs.org/editor-manuscripts/.

Supplementary material

Supplementary material

The supplementary material for this article can be found at https://doi.org/10.1557/mrc.2019.11

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Takahashi, K., Fujie, T., Teramoto, R. et al. Elastomer-based MEMS optical interferometric transducers for highly sensitive surface stress sensing for biomolecular detection. MRS Communications 9, 381–389 (2019). https://doi.org/10.1557/mrc.2019.11

Download citation