Transparent carbon nanotube electrodes for electric cell-substrate impedance sensing

Abstract

Electric cell–substrate impedance sensing is widely used to study cell behavior such as adhesion, migration, and cell toxicity. However, a simultaneous optical imaging of cells is limited by inefficient transmission of visible light through the gold electrodes. To overcome this limitation, we fabricated carbon nanotube (CNT) electrodes with high electrical conductivity as well as optical transmittance. The impedimetric monitoring of cell proliferation and migration by gold and CNT electrodes were compared and analyzed. Taking advantage of the optical transparency of CNTs, we demonstrated a simultaneous electronic and optical monitoring of MCF7 cells, with acquisition of high-resolution images.

This is a preview of subscription content, access via your institution.

Figure 1
Figure 2
Figure 3
Figure 4

References

  1. 1.

    I. Giaever and C.R. Keese: Use of electric fields to monitor the dynamical aspect of cell behavior in tissue culture. IEEE Trans. Biomed. Eng. 33, 242–247 (1986).

    CAS  Article  Google Scholar 

  2. 2.

    C.R. Keese, J. Wegener, S.R. Walker, and I. Giaever: Electrical wound-healing assay for cells in vitro. Proc. Natl. Acad. Sci. USA 101, 1554–1559 (2004).

    CAS  Article  Google Scholar 

  3. 3.

    M. Ramuz, A. Hama, M. Huerta, J. Rivnay, P. Leleux, and R.M. Owens: Combined optical and electronic sensing of epithelial cells using planar organic transistors. Adv. Mater. 26, 7083–7090 (2014).

    CAS  Article  Google Scholar 

  4. 4.

    S. Iijima: Helical microtubules of graphitic carbon. Nature 354, 56–58 (1991).

    CAS  Article  Google Scholar 

  5. 5.

    C.-M. Tîlmaciu and M.C. Morris: Carbon nanotube biosensors. Front. Chem. 3, 59 (2015).

    Article  Google Scholar 

  6. 6.

    M. Abdolahad, M. Taghinejad, H. Taghinejad, M. Janmaleki, and S. Mohajerzadeh: A vertically aligned carbon nanotube-based impedance sensing biosensor for rapid and high sensitive detection of cancer cells. Lab. Chip 12, 1183–1190 (2012).

    CAS  Article  Google Scholar 

  7. 7.

    S. Zanganeh, F. Khodadadei, S.R. Tafti, and M. Abdolahad: Folic acid functionalized vertically aligned carbon nanotube (FA-VACNT) electrodes for cancer sensing applications. J. Mater. Res. Technol. 32, 617–625 (2016).

    CAS  Google Scholar 

  8. 8.

    Y. Liu, F. Zhu, W. Dan, Y. Fu, and S. Liu: Construction of carbon nanotube based nanoarchitectures for selective impedimetric detection of cancer cells in whole blood. Analyst 139, 5086–5092 (2014).

    CAS  Article  Google Scholar 

  9. 9.

    C.A.S. Andrade, J.M. Nascimento, I.S. Oliveira, C.V.J. De Oliveira, C.P. De Melo, O.L. Franco, and M.D.L. Oliveira: Nanostructured sensor based on carbon nanotubes and clavanin A for bacterial detection. Colloids Surf. B Biointerfaces 135, 833–839 (2015).

    CAS  Article  Google Scholar 

  10. 10.

    C. Chen, T. Jin, L. Wei, Y. Li, X. Liu, Y. Wang, L. Zhang, C. Liao, N. Hu, C. Song, and Y. Zhang: High-work-function metal/carbon nanotube/ low-work-function metal hybrid junction photovoltaic device. NPG Asia Mater. 7, e220 (2015).

    Article  Google Scholar 

  11. 11.

    F. Loghin, S. Colasanti, A. Weise, A. Falco, A. Abdelhalim, P. Lugli, and A. Abdellah: Scalable spray deposition process for highly uniform and reproducible CNT-TFTs. Flexible Printed Electron. 1, 045002 (2016).

    Article  Google Scholar 

  12. 12.

    L.Y. Chen, Y.J. Chen, and C.S. Chang: Electric current distribution of a multiwall carbon nanotube. AIP Adv. 6, 075216 (2016).

    Article  Google Scholar 

  13. 13.

    M. Tinkham: Energy gap interpretation of experiments on infrared transmission through superconducting films. Phys. Rev. 104, 84–846 (1956).

    Article  Google Scholar 

  14. 14.

    A. Falco, L. Cina, G. Scarpa, P. Lugli, and A. Abdellah: Fully-sprayed and flexible organic photodiodes with transparent carbon nanotube electrodes. ACS Appl. Mater. Interfaces 6, 10593–10601 (2014).

    CAS  Article  Google Scholar 

  15. 15.

    T. Fujigaya and N. Nakashima: Non-covalent polymer wrapping of carbon nanotubes and the role of wrapped polymers as functional dispersants. Sci. Technol. Adv. Mater. 16, 024802 (2015).

    Article  Google Scholar 

  16. 16.

    R.C. Tenent, T.M. Barnes, J.D. Bergeson, A.J. Ferguson, B. To, L.M. Gedvilas, M.J. Heben, and J.L. Blackburn: Ultrasmooth, large-area, high-uniformity, conductive transparent single-walled-carbon-nanotube films for photovoltaics produced by ultrasonic spraying. Adv. Mater. 21, 3210–3216 (2009).

    CAS  Article  Google Scholar 

  17. 17.

    Y. Zhou and R. Azumi: Carbon nanotube based transparent conductive films: progress, challenges, and perspectives. Sci. Technol. Adv. Mater. 17, 493–516 (2016).

    CAS  Article  Google Scholar 

  18. 18.

    L. Vaisman, H.D. Wagner, and G. Marom: The role of surfactants in dispersion of carbon nanotubes. Adv. Colloid Interface Sci. 128, 37–46 (2006).

    Article  Google Scholar 

  19. 19.

    M. Imaninezhad, J. Schober, D. Griggs, P. Ruminski, I. Kuljanishvili, and S.P. Zustiak: Cell attachment and spreading on carbon nanotubes Is facilitated by integrin binding. Front. Bioeng. Biotechnol. 6, 129 (2018).

    Article  Google Scholar 

  20. 20.

    J.-R. Lee, S. Ryu, S. Kim, and B.-S. Kim: Behaviors of stem cells on carbon nanotube. Biomater. Res. 19, 3 (2015).

    Article  Google Scholar 

  21. 21.

    S. Namgung, K.Y. Baik, J. Park, and S. Hong: Controlling the growth and differentiation of human mesenchymal stem cells by the arrangement of individual carbon nanotubes. ACS Nano 5, 7383–7390 (2011).

    CAS  Article  Google Scholar 

  22. 22.

    J. Ren, Q. Xu, X. Chen, W. Li, K. Guo, Y. Zhao, Q. Wang, Z. Zhang, H. Peng, and Y.-G. Li: Superaligned carbon nanotubes guide oriented cell growth and promote electrophysiological homogeneity for synthetic cardiac tissues. Adv. Mater. 29, 1702713 (2017).

    Article  Google Scholar 

  23. 23.

    R.L. Price, K. Ellison, K.M. Haberstroh, and T.J. Webster: Nanometer surface roughness increases select osteoblast adhesion on carbon nanofiber compacts. J. Biomed. Mater. Res. A 70, 129–138 (2004).

    Article  Google Scholar 

  24. 24.

    O.M. Perepelytsina, A.P. Ugnivenko, A.V. Dobrydnev, O.N. Bakalinska, A.I. Marynin, and M.V. Sydorenko: Influence of carbon nanotubes and its derivatives on tumor cells in vitro and biochemical parameters, cellular blood composition in vivo. Nanoscale Res. Lett. 13, 286 (2018).

    Article  Google Scholar 

  25. 25.

    S. Namgung, T. Kim, K.Y. Baik, M. Lee, J.M. Nam, and S. Hong: Fibronectin-carbon-nanotube hybrid nanostructures for controlled cell growth. Small 7, 56–61 (2011).

    CAS  Article  Google Scholar 

  26. 26.

    G. Rahman, Z. Najaf, A. Mehmood, S. Bilal, A.U.H.A. Shah, S.A. Mian, and G. Ali: An overview of the recent progress in the synthesis and applications of carbon nanotubes. C 5, 3 (2019).

    CAS  Google Scholar 

  27. 27.

    E. Warburg: Polarization capacity of platinum. Ann. Phys. 6, 12–135 (1901).

    Google Scholar 

  28. 28.

    J. Wegener, C.R. Keese, and I. Giaever: Electric cell–substrate impedance sensing (ECIS) as a noninvasive means to monitor the kinetics of cell spreading to artificial surfaces. Exp. Cell Res. 259, 158–166 (2000).

    CAS  Article  Google Scholar 

  29. 29.

    L.F. Aval, M. Ghoranneviss, and G.B. Pour: High-performance supercapa-citors based on the carbon nanotubes, graphene and graphite nanoparti-cles electrodes. Heliyon 4, e00862 (2018).

    Article  Google Scholar 

  30. 30.

    J.A. Stolwijk, K. Matrougui, C.W. Renken, and M. Trebak: Impedance analysis of GPCR-mediated changes in endothelial barrier function: overview, and fundamental considerations for stable and reproducible measurements. Pflugers Arch 467, 2193–2218 (2015).

    CAS  Article  Google Scholar 

Download references

Acknowledgments

This work was partly supported by the European Community’s Seventh Framework Programme (FP7 People: Marie-Curie Actions/2007-2013) under the Grant Agreement n° 607896, the International Graduate School for Science and Engineering (IGSSE) at the Technische Universität München. Here, we would like to thank Markus Becherer for his support during the project.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Shokoufeh Teymouri.

Supplementary material

Supplementary material

The supplementary material for this article can be found at: https://doi.org/10.1557/mrc.2019.116.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Teymouri, S., Loghin, F., Bobinger, M. et al. Transparent carbon nanotube electrodes for electric cell-substrate impedance sensing. MRS Communications 9, 1292–1299 (2019). https://doi.org/10.1557/mrc.2019.116

Download citation