Tuning transport properties of nickel-doped zinc oxide for thermoelectric applications


ZnO-based oxides are promising for thermoelectric energy generation at elevated temperatures. We study electrical transport properties of Ni-doped ZnO applying the density functional theory, indicating increase of the electrical conductivity (σ) and decrease of the Seebeck coefficient (S) due to Ni-doping, in full accordance with experimental results. We calculate the temperature-dependent σ and S applying the Boltzmann transport theory, approximating the electron relaxation time, τe. Good agreement with experimental data is obtained considering both temperature and energy dependence of τe. This yields explicit expressions for τe and provides us with powerful predictive tool assessing electronic transport in ZnO.

This is a preview of subscription content, access via your institution.

Figure 1
Figure 2
Figure 3
Table I
Figure 4
Figure 5


  1. 1.

    T.M. Tritt and M. Subramanian: Thermoelectric materials, phenomena, and applications: a bird’s eye view. MRS Bull. 31, 188–229 (2006)

    Article  Google Scholar 

  2. 2.

    A.D. Lalonde, Y. Pei, H. Wang, and G.J. Snyder: Lead telluride alloy thermoelectrics the opportunity to use solid-state thermoelectrics for waste heat. Mater. Today 14, 526–532 (2011).

    CAS  Article  Google Scholar 

  3. 3.

    W. Liu, J. Hu, S. Zhang, M. Deng, and C. Han: New trends, strategies and opportunities in thermoelectric materials: a perspective. Mater. Today Phys. 1, 50–60 (2017).

    Article  Google Scholar 

  4. 4.

    K. Koumoto, R. Funahashi, E. Guilmeau, Y. Miyazaki, A. Weidenkaff, Y. Wang, and C. Wan: Thermoelectric ceramics for energy harvesting. J. Am. Ceram. Soc. 96, 1–23 (2013).

    CAS  Article  Google Scholar 

  5. 5.

    K. Koumoto, Y. Wang, R. Zhang, A. Kosuga, and R. Funahashi: Oxide thermoelectric materials: a nanostructuring approach. Annu. Rev. Mater. Res. 40, 363–394 (2010).

    CAS  Article  Google Scholar 

  6. 6.

    I. Terasaki, Y. Sasago, and K. Uchinokura: Large thermoelectric power in NaCo2O4 single crystals. Phys. Rev. B 56, R12685–R12687 (1997).

    CAS  Article  Google Scholar 

  7. 7.

    J. He, Y. Liu, and R. Funahashi: Oxide thermoelectrics: the challenges, progress, and outlook. J. Mater. Res. 26, 1762–1772 (2011).

    CAS  Article  Google Scholar 

  8. 8.

    A. Masset, C. Michel, A. Maignan, M. Hervieu, O. Toulemonde, F. Studer, B. Raveau, and J. Hejtmanek: Misfit-layered cobaltite with an anisotropic giant magnetoresistance: Ca3Co4O9. Phys. Rev. B 62, 166–175 (2000).

    CAS  Article  Google Scholar 

  9. 9.

    Y. Amouyal: On the role of lanthanum substitution defects in reducing lattice thermal conductivity of the AgSbTe2 (P4/mmm) thermoelectric compound for energy conversion applications. Comput. Mater. Sci. 78, 98–103 (2013).

    CAS  Article  Google Scholar 

  10. 10.

    T. Mori: Novel principles and nanostructuring methods for enhanced thermoelectrics. Small 13, 1702013 (2017).

    Article  CAS  Google Scholar 

  11. 11.

    B.-L. Huang and M. Kaviany: Ab initio and molecular dynamics predictions for electron and phonon transport in bismuth telluride. Phys. Rev. B 77, 1–19 (2008).

    Google Scholar 

  12. 12.

    R.M. Martin: Electronic Structure. Basic Theory and Practical Methods (Cambridge University Press, Cambridge, UK, 2004).

    Google Scholar 

  13. 13.

    B. Wiendlocha, K. Kutorasinski, S. Kaprzyk, and J. Tobola: Scripta materialia recent progress in calculations of electronic and transport properties of disordered thermoelectric materials. Scr. Mater. 111, 33–38 (2016).

    CAS  Article  Google Scholar 

  14. 14.

    M.K. Yaakob, N.H. Hussin, M.F.M. Taib, T.I.T. Kudin, O.H. Hassan, A.M.M. Ali, and M.Z.A. Yahya: First principles LDA + U calculations for ZnO materials. Integr. Ferroelectr. 155, 15–22 (2014).

    CAS  Article  Google Scholar 

  15. 15.

    H. Takaki, K. Kobayashi, M. Shimono, N. Kobayashi, K. Hirose, N. Tsujii, and T. Mori: First-principles calculations of Seebeck coefficients in a magnetic. Appl. Phys. Lett. 110, 72107 (2017).

    Article  CAS  Google Scholar 

  16. 16.

    N. Tsujii and T. Mori: High thermoelectric power factor in a carrier-doped magnetic semiconductor CuFeS_2. Appl. Phys. Express 6, 43001 (2013)

    Article  CAS  Google Scholar 

  17. 17.

    V. Iv, E. Janz, A. Gali, and I.A. Abrikosov: Theoretical unification of hybrid-DFT and DFT + U methods for the treatment of localized orbitals. Phys. Rev. B 35146, 1–13 (2014).

    Google Scholar 

  18. 18.

    I. Koresh and Y. Amouyal: Effects of microstructure evolution on transport properties of thermoelectric nickel-doped zinc oxide. J. Eur. Ceram. Soc. 37, 3541–3550 (2017)

    CAS  Article  Google Scholar 

  19. 19.

    Ü Özgür, Y.I. Alivov, C. Liu, A. Teke, M.A. Reshchikov, S. Doğan, V. Avrutin, S. Cho, and H. Morkoç: A comprehensive review of ZnO materials and devices. J. Appl. Phys. 98, 41301 (2005).

    Article  CAS  Google Scholar 

  20. 20.

    M. Ohtaki and K. Araki: High thermoelectric performance of dually doped ZnO ceramics. J. Electron. Mater. 38, 1234–1238 (2009).

    CAS  Article  Google Scholar 

  21. 21.

    H. Colder, E. Guilmeau, C. Harnois, S. Marinel, R. Retoux, and E. Savary: Preparation of Ni-doped ZnO ceramics for thermoelectric applications. J. Eur. Ceram. Soc. 31, 2957–2963 (2011).

    CAS  Article  Google Scholar 

  22. 22.

    G.K.H. Madsen and D.J. Singh: BoltzTraP. A code for calculating band-structure dependent quantities. Comput. Phys. Commun. 175, 67–71 (2006).

    CAS  Article  Google Scholar 

  23. 23.

    G. Kresse: Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

    CAS  Article  Google Scholar 

  24. 24.

    A. Janotti and C.G. Walle, Van De, Fundamentals of zinc oxide as a semiconductor. Rep. Prog. Phys. 72, 126501 (2009).

    Article  CAS  Google Scholar 

  25. 25.

    A. Azmin, M. Syafiq, M. Kamil, M. Fariz, and M. Taib: First-principles calculation on electronic properties of zinc oxide by zinc—air system. J. King Saud Univ. Eng. Sci. 29, 278–283 (2015).

    Google Scholar 

  26. 26.

    A.S. Mohammadi: Density functional approach to study electronic structure of ZnO single crystal. World Appl. Sci. J. 14, 1530–1536 (2011).

    CAS  Google Scholar 

  27. 27.

    U. Von Barth and L. Hedin: A local exchange-correlation potential for the spin polarized case. J. Phys. C, Solid State Phys. 5, 1629–1642 (2001).

    Article  Google Scholar 

  28. 28.

    J. Heyd, G.E. Scuseria, M. Ernzerhof, J. Heyd, G.E. Scuseria, and M. Ernzerhof: Hybrid functionals based on a screened Coulomb potential. J. Chem. Phys. 118, 8207 (2003).

    CAS  Article  Google Scholar 

  29. 29.

    B. Himmetoglu, A. Floris, S. De Gironcoli, and M. Cococcioni: Hubbard-corrected DFT energy functionals: the LDA + U description of correlated systems. Int. J. Quantum Chem. 114, 14 (2014).

    CAS  Article  Google Scholar 

  30. 30.

    D.B. Wallace: An introduction to Hellmann-Feynman theory. Masters Thesis, University of Central Florida, Orlando, Florida, 2005

    Google Scholar 

  31. 31.

    A. Baranovskiy and Y. Amouyal: Dependence of electrical transport properties of CaO(CaMnO3)m (m = 1, 2, 3, ∞) thermoelectric oxides on lattice periodicity. J. Appl. Phys. 121, 65103 (2017).

    Article  CAS  Google Scholar 

  32. 32.

    E. Joseph and Y. Amouyal: Enhancing thermoelectric performance of PbTe-based compounds by substituting elements: a first principles study. J. Electron. Mater. 44, 1460–1468 (2015).

    CAS  Article  Google Scholar 

  33. 33.

    E. Joseph and Y. Amouyal: Towards a predictive route for selection of doping elements for the thermoelectric compound PbTe from first-principles. J. Appl. Phys. 117, 175102 (2015).

    Article  CAS  Google Scholar 

  34. 34.

    P.B. Allen and N. Trivedi: Hall coefficient of cubic metals. Phys. Rev. B 45, 886–890 (1992)

    Google Scholar 

  35. 35.

    B. Allen, E. Pickett, and H. Krakauer: Anisotropic normal-state transport properties predicted and analyzed for high-T, oxide superconductors. Phys. Rev. B 37, 7482–7490 (1987).

    Article  Google Scholar 

  36. 36.

    F.P. Zhang, Q.M. Lu, X. Zhang, and J.X. Zhang: Electrical transport properties of CaMnO3 thermoelectric compound: a theoretical study. J. Phys. Chem. Solids 74, 1859–1864 (2013).

    CAS  Article  Google Scholar 

  37. 37.

    Y. Wang, X. Chen, T. Cui, Y. Niu, Y. Wang, M. Wang, Y. Ma, and G. Zou: Enhanced thermoelectric performance of PbTe within the orthorhombic Pnma phase. Phys. Rev. B 76, 155127 (2007).

    Article  CAS  Google Scholar 

  38. 38.

    K. Seeger: Semiconductor Physics Advanced Texts in Physics (Springer-Verlag Heidelberg GmbH, Berlin 2004).

    Google Scholar 

  39. 39.

    S. Hao, F. Shi, V. Dravid, M. Kanatzidis, and C. Wolverton: Computational prediction of high thermoelectric performance in hole doped layered GeSe. Chem. Mater. 28, 3218–3226 (2016).

    CAS  Article  Google Scholar 

  40. 40.

    G. Bouzerar, S. Thébaud, C. Adessi, R. Debord, M. Apreutesei, R. Bachelet, and S. Pailhès: Unified modelling of the thermoelectric properties in SrTiO3. arXiv:1702.02751 [cond-mat.mtrl-sci]. 1–5 (2017).

    Google Scholar 

  41. 41.

    D. Brida, C. Gadermaier, D. Polli, V.V. Kabanov, D. Mihailovic, and G. Cerullo: Electron relaxation in metals and high-Tc superconductors on the 10-fs timescale. In Ultrafast Phenomena in Semiconductors and Nanostructure Materials XV, K.-T. Tsen, J.-J. Song, M. Betz and A.Y. Elezzabi eds.; 2011; pp. 1–7.

    Google Scholar 

  42. 42.

    K.H. Bennemann: Ultrafast dynamics in solids. J. Phys. Condens. Matter 16, R995–R1056 (2004).

    CAS  Article  Google Scholar 

  43. 43.

    F. Ahmed and N. Tsujii: Thermoelectric properties of CuGa1−xMnxTe2: power factor enhancement by incorporation of magnetic ions. J. Mater. Chem. A 5, 7545–7554 (2017).

    CAS  Article  Google Scholar 

  44. 44.

    A.U. Khan, R. Al, R. Al, A. Pakdel, J. Vaney, B. Fontaine, S. Mitani, and T. Mori: Sb doping of metallic CuCr2S4 as a route to highly improved thermoelectric properties. Chem. Mater. 29, 2988 (2017).

    CAS  Article  Google Scholar 

  45. 45.

    H. Takaki, K. Kobayashi, M. Shimono, N. Kobayashi, K. Hirose, N. Tsujii, and T. Mori: Thermoelectric properties of a magnetic semiconductor CuFeS2. Mater. Today Phys. J. 3, 85–92 (2017).

    Article  Google Scholar 

  46. 46.

    A. Kowalczyk, M. Falkowski, and T. Toliński: Thermal conductivity and Lorenz number of the Ce1−xLaxNiAl4 Kondo alloys. Solid State Commun. 193, 26–29 (2014).

    CAS  Article  Google Scholar 

Download references


This study is carried out with generous support from the Ministry of Immigrant Absorption—Israel. Partial support from the Israeli Ministry of Energy as well as the Grand Technion Energy Program (GTEP) is acknowledged. The authors are grateful to Prof. Igor Abrikosov of Linköping University, Sweden, and the National University of Science and Technology (MISIS), Russia, for helpful discussions.

Author information



Corresponding author

Correspondence to Yaron Amouyal.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Baranovskiy, A., Koresh, I. & Amouyal, Y. Tuning transport properties of nickel-doped zinc oxide for thermoelectric applications. MRS Communications 8, 858–864 (2018). https://doi.org/10.1557/mrc.2018.96

Download citation