PdAg-decorated three-dimensional reduced graphene oxide-multi-walled carbon nanotube hierarchical nanostructures for high-performance hydrogen peroxide sensing

Abstract

High-performance electrochemical hydrogen peroxide (H2O2) sensors based on PdAg nanoparticle-decorated reduced graphene oxide (rGO) and multi-walled carbon nanotube (MWCNT) hybrids were developed. The nanostructures were characterized using transmission electron microscopy, scanning electron microscopy, energy-dispersive spectroscopy, thermogravimetric analysis, Fourier transform spectroscopy, and x-ray diffraction techniques. It was found that introduction of MWCNT in the catalyst layer improved the sensitivity and widened the linear range. Sensitivities of 393.2, 437.1, and 576.6 μA/mM/cm2 were obtained for PdAg/rGO-MWCNT (2:1), PdAg/rGO-MWCNT (1:1), and PdAg/rGO-MWCNT (1:2), respectively. Furthermore, hierarchical structure of rGO-MWCNT nanohybrids enabled the detection of H2O2 up to 80 mM.

This is a preview of subscription content, access via your institution.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Figure 1
Figure 2
Figure 3
Figure 4
Table I

References

  1. 1.

    X. Chen, G. Wu, Z. Cai, M. Oyama, and X. Chen: Advances in enzyme-free electrochemical sensors for hydrogen peroxide, glucose, and uric acid. Microchim. Acta 181, 689–705 (2014).

    CAS  Article  Google Scholar 

  2. 2.

    W. Liu, K. Hiekel, R. Hubner, H.J. Sun, A. Ferancova, and M. Sillanpaa: Pt and Au bimetallic and monometallic nanostructured amperometric sensors for direct detection of hydrogen peroxide: influences of bimetallic effect and silica support. Sens. Actuators B - Chem. 255, 1325–1334 (2018).

    CAS  Article  Google Scholar 

  3. 3.

    F. Wang, R. Han, G.T. Liu, H.F. Chen, T.R. Ren, H.F. Yang, and Y. Wen: Construction of polydopamine/silver nanoparticles multilayer film for hydrogen peroxide detection. J. Electroanal. Chem. 706, 102–107 (2013).

    CAS  Article  Google Scholar 

  4. 4.

    Y.S. Bae, S.W. Kang, M.S. Seo, I.C Baines., E. Tekle, P.B. Chock, and S.G. Rhee: Epidermal growth factor (EGF)-induced generation of hydrogen peroxide - role in EGF receptor-mediated tyrosine phosphorylation. J. Biol. Chem. 272, 217–221 (1997).

    CAS  Article  Google Scholar 

  5. 5.

    M.K. Chung, J. Asgar, J. Lee, M.S. Shim, C. Dumler, and J.Y. Ro: The role of trpm2 in hydrogen peroxide-induced expression of inflammatory cytokine and chemokine in rat trigeminal ganglia. Neuroscience 297, 160–169 (2015).

    CAS  Article  Google Scholar 

  6. 6.

    M. Rojkind, J.A. Dominguez-Rosales, N. Nieto, and P. Greenwel: Role of hydrogen peroxide and oxidative stress in healing responses. Cell. Mol. Life Sci. 59, 1872–1891 (2002).

    CAS  Article  Google Scholar 

  7. 7.

    A Uzer, S. Durmazel, E. Ercag, and R. Apak: Determination of hydrogen peroxide and triacetone triperoxide (TATP) with a silver nanoparticles-based turn-on colorimetric sensor. Sens. Actuators B - Chem. 247, 98–107 (2017).

    CAS  Article  Google Scholar 

  8. 8.

    P. Gimeno, C. Bousquet, N. Lassu, A.F. Maggio, C. Civade, C. Brenier, and L. Lempereur: High-performance liquid chromatography method for the determination of hydrogen peroxide present or released in teeth bleaching kits and hair cosmetic products. J. Pharm. Biomed. Anal. 107, 386–393 (2015).

    CAS  Article  Google Scholar 

  9. 9.

    M.R. Song, J.L. Wang, B.Y. Chen, and L. Wang: A facile, nonreactive hydrogen peroxide (H2O2) detection method enabled by ion chromatography with uv detector. Anal. Chem. 89, 11537–11544 (2017).

    CAS  Article  Google Scholar 

  10. 10.

    U. Pinkernell, H.J. Luke, and U. Karst: Selective photometric determination of peroxycarboxylic acids in the presence of hydrogen peroxide. Analyst 122, 567–571 (1997).

    CAS  Article  Google Scholar 

  11. 11.

    A. Uzunoglu, A.D. Scherbarth, and L. Stanciu: Bimetallic PdCu/SPCE non-enzymatic hydrogen peroxide sensors. Sens. Actuators, B 220, 968–976 (2015).

    CAS  Article  Google Scholar 

  12. 12.

    C. Biswas, and Y.H. Lee: Graphene versus carbon nanotubes in electronic devices. Adv. Funct. Mater. 21, 3806–3826 (2011).

    CAS  Article  Google Scholar 

  13. 13.

    P. Serp, M. Corrias, and P. Kalck: Carbon nanotubes and nanofibers in catalysis. Appl. Catal. a - Gen. 253, 337–358 (2003).

    CAS  Article  Google Scholar 

  14. 14.

    S.Z. Bas: Gold nanoparticle functionalized graphene oxide modified platinum electrode for hydrogen peroxide and glucose sensing. Mater. Lett. 150, 20–23 (2015).

    CAS  Article  Google Scholar 

  15. 15.

    Y. Tian, F. Wang, Y. Liu, F. Pang, and X. Zhang: Green synthesis of silver nanoparticles on nitrogen-doped graphene for hydrogen peroxide detection. Electrochim. Acta 146, 646–653 (2014).

    CAS  Article  Google Scholar 

  16. 16.

    Y.Y. Shao, J. Wang, H. Wu, J. Liu, I.A. Aksay, and Y.H. Lin: graphene based electrochemical sensors and biosensors: a review. Electroanalysis 22, 1027–1036 (2010).

    CAS  Article  Google Scholar 

  17. 17.

    Y.D. Liu, F.Q. Wang, X.M. Wang, X.Z. Wang, E. Flahaut, X.L. Liu, Y. Li, X.R. Wang, Y.B. Xu, Y. Shi, and R. Zhang: Planar carbon nanotube-graphene hybrid films for high-performance broadband photodetectors. Nat. Commun. 6, 8589 (2015).

    CAS  Article  Google Scholar 

  18. 18.

    Z.J. Fan, J. Yan, L.J. Zhi, Q. Zhang, T. Wei, J. Feng, M.L. Zhang, W.Z. Qian, and F.A. Wei: Three-dimensional carbon nanotube/graphene sandwich and its application as electrode in supercapacitors. Adv. Mater. 22, 3723 (2010).

    CAS  Article  Google Scholar 

  19. 19.

    X. Cui, S. Wu, Y. Li, and G. Wan: Sensing hydrogen peroxide using a glassy carbon electrode modified with in-situ electrodeposited platinum-gold bimetallic nanoclusters on a graphene surface. Microchim. Acta 182, 265–272 (2015).

    CAS  Article  Google Scholar 

  20. 20.

    J. Sophia and G. Muralidharan: Polyvinylpyrrolidone stabilized palladium nanospheres as simple and novel electrochemical sensor for amperometric hydrogen peroxide detection. J. Electroanal. Chem. 739, 115–121 (2015).

    CAS  Article  Google Scholar 

  21. 21.

    J.M. Campelo, D. Luna, R. Luque, J.M. Marinas, and A.A. Romero: Sustainable preparation of supported metal nanoparticles and their applications in catalysis. ChemSusChem. 2, 18–45 (2009).

    CAS  Article  Google Scholar 

  22. 22.

    A. Uzunoglu, S. Song, and L.A. Stanciu: A sensitive electrochemical H2O2 sensor based on pdag-decorated reduced graphene oxide nanocomposites. J. Electrochem. Soc. 163, B379–B384 (2016).

    CAS  Article  Google Scholar 

  23. 23.

    S.H. Kim, G.H. Jeong, D. Choi, S. Yoon, H.B. Jeon, S.M. Lee, and S.W. Kim: Synthesis of noble metal/graphene nanocomposites without surfactants by one-step reduction of metal salt and graphene oxide. J. Colloid Interface Sci. 389, 85–90 (2013).

    CAS  Article  Google Scholar 

  24. 24.

    A.J. Wang, W. Yu., Z.P. Huang, F. Zhou, J.B. Song, Y.L. Song, L.L. Long, M.P. Cifuentes, M.G. Humphrey, L. Zhang, J.D. Shao, and C. Zhang: Covalent functionalization of reduced graphene oxide with porphyrin by means of diazonium chemistry for nonlinear optical performance. Sci. Rep. 6, 23325 (2016).

    CAS  Article  Google Scholar 

  25. 25.

    J. Zhao, L. Liu, and F. Li: Graphene Oxide: Physics and Applications (Springer-Verlag Berlin and Heidelberg GmbH & Co. KG, Berlin, Germany, 2015).

    Google Scholar 

  26. 26.

    M.T. Tajabadi, W.J. Basirun, F. Lorestani, R. Zakaria, S. Baradaran, Y.M. Amin, M.R. Mahmoudian, M. Rezayi, and M. Sookhakian: Nitrogen-doped graphene-silver nanodendrites for the non-enzymatic detection of hydrogen peroxide. Electrochim. Acta 151, 126–133 (2015).

    CAS  Article  Google Scholar 

  27. 27.

    S. Palanisamy, H.F. Lee, S.M. Chen, and B. Thirumalraj: An electrochemical facile fabrication of platinum nanoparticle decorated reduced graphene oxide; application for enhanced electrochemical sensing of H2O2. RSC Adv. 5, 105567–105573 (2015).

    CAS  Article  Google Scholar 

  28. 28.

    F. Lorestani, Z. Shahnavaz, P. Mn, Y. Alias, and S.A. Manan: One-step hydrothermal green synthesis of silver nanoparticle-carbon nanotube reduced-graphene oxide composite and its application as hydrogen peroxide sensor. Sens. Actuators, B 208, 389–398 (2015).

    CAS  Article  Google Scholar 

Download references

Acknowledgement

The authors acknowledge Hitit University Research Department for the financial support (FEF190001.17.008). The authors also thank Ahmet Burcin Batibay for his valuable contributions.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Aytekin Uzunoglu.

Appendices

Conflict of Interest

The authors declare no conflict of interest.

Supplementary Material

The supplementary material for this article can be found at {rs|https://doi.org/10.1557/mrc.2018.82|url|}

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Uzunoglu, A., Kose, D.A., Kose, K. et al. PdAg-decorated three-dimensional reduced graphene oxide-multi-walled carbon nanotube hierarchical nanostructures for high-performance hydrogen peroxide sensing. MRS Communications 8, 680–686 (2018). https://doi.org/10.1557/mrc.2018.82

Download citation