Mechanism-based design of precursors for focused electron beam-induced deposition

Abstract

Focused electron beam-induced deposition (FEBID) is capable of producing metal-containing nanostructures with lateral resolution on the sub-nanometer scale. Practical application of this nanofabrication technique has been hindered by ligand-derived contamination from precursors developed for thermal deposition methods. Mechanistic insight into FEBID through surface science studies and gas-phase electron-molecule interactions has begun to enable the design of custom FEBID precursors. These studies have shown that precursors designed to decompose under electron irradiation can produce high-purity FEBID deposits. Herein, we highlight the progress in FEBID precursor development with several examples that incorporate this mechanism-based design approach.

This is a preview of subscription content, access via your institution.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Table 1
Figure 10

References

  1. 1.

    W. Van Dorp, C. Hagen, P. Crazier, and P. Kruit: Growth behavior near the ultimate resolution of nanometer-scale focused electron beam-induced deposition. Nanotechnology 19, 225305 (2008).

    Article  Google Scholar 

  2. 2.

    S.J. Randolph, J.D. Fowlkes, and P.D. Rack: Focused, nanoscale electron-beam-induced deposition and etching. Crit. Rev. Solid State Mater. Sri 31, 55 (2006).

    CAS  Article  Google Scholar 

  3. 3.

    W.F. Van Dorp and C.W. Hagen: A critical literature review of focused electron beam induced deposition. J. Appl. Phys. 104, 081301 (2008).

    Article  CAS  Google Scholar 

  4. 4.

    I. Utke, P. Hoffman, and J. Melngailis: Gas-assisted focused electron beam and ion beam processing and fabrication. J. Vac. Sri Technol. B 26, 1197 (2008).

    CAS  Article  Google Scholar 

  5. 5.

    M. Huth, F. Porrati, C. Schwalb, M. Winhold, R. Sachser, M. Dukic, J. Adams, and G. Fantner: Focused electron beam induced deposition: a perspective. Beilstein J. Nanotechnol. 3, 597 (2012).

    CAS  Article  Google Scholar 

  6. 6.

    H. Acar: Fabrication of plasmonic nanostructures with electron beam induced deposition (University of Twente, Zutphen, 2013).

    Google Scholar 

  7. 7.

    M. Gavagnin, H.D. Wanzenboeck, D. Belie, and E. Bertagnolli: Synthesis of individually tuned nanomagnets for nanomagnet logic by direct write focused electron beam induced deposition. ACS Nano 7, 777 (2013).

    CAS  Article  Google Scholar 

  8. 8.

    J. Brown, P. Kocher, C.S. Ramanujan, D.N. Sharp, K. Torimitsu, and J.F. Ryan: Electrically conducting, ultra-sharp, high aspect-ratio probes for AFM fabricated by electron-beam-induced deposition of platinum. Ultramicroscopy 133, 62 (2013).

    CAS  Article  Google Scholar 

  9. 9.

    K. Murakami and M. Takai: Characteristics of nano electron source fabricated using beam assisted process. J. Vac. Sri Technol. B 22, 1266 (2004).

    CAS  Article  Google Scholar 

  10. 10.

    K. Murakami and M. Takai: Nano electron source fabricated by beam-induced deposition and its unique feature. Microelectron. Eng. 132, 74 (2015).

    CAS  Article  Google Scholar 

  11. 11.

    A. Perentes and P. Hoffmann: Focused electron beam induced deposition of Si-based materials from SiOxCy to stoichiometric SiO2: chemical compositions, chemical-etch rates, and deep ultraviolet optical transmissions. Chem. Vap. Deposition 13, 176 (2007).

    CAS  Article  Google Scholar 

  12. 12.

    K. Edinger, H. Becht, J. Bihr, V. Boegli, M. Budach, T. Hofmann, H.W. P. Koops, P. Kuschnerus, J. Oster, P. Spies, and B. Weyrauch: Electron-beam-based photomask repair. J. Vac. Sri Technol. B 22, 2902 (2004).

    CAS  Article  Google Scholar 

  13. 13.

    T. Liang, E. Frendberg, B. Lieberman, and A. Stivers: Advanced photolithographic mask repair using electron beams. J. Vac. Sri Technol. B 23, 3101 (2005).

    CAS  Article  Google Scholar 

  14. 14.

    C.T.H. Heerkens, M.J. Kamerbeek, W.F. Van Dorp, C.W. Hagen, and J. Hoekstra: Electron beam induced deposited etch masks. Microelectron. Eng. 86, 961 (2009).

    CAS  Article  Google Scholar 

  15. 15.

    B. Hubner, H.W.P. Koops, H. Pagnia, N. Sotnik, J. Urban, and M. Weber: Tips for scanning tunneling microscopy produced by electron-beam-induced deposition. Ultramicroscopy 42–44, 1519 (1992).

    Article  Google Scholar 

  16. 16.

    I.-C. Chen, L-H. Chen, C. Orme, A. Quist, R. Lai, and S. Jin: Fabrication of high-aspect-ratio carbon nanocone probes by electron beam induced deposition patterning. Nanotechnology 17, 4322 (2006).

    CAS  Article  Google Scholar 

  17. 17.

    S. Graells, R. Alcubilla, G. Badenes, and R. Quidant: Growth of plas-monic gold nanostructures by electron beam induced deposition. Appl. Phys. Lett. 91, 121112 (2007).

    Article  CAS  Google Scholar 

  18. 18.

    A. Weber-Bargioni, A. Schwartzberg, M. Schmidt, B. Harteneck, D.F. Ogletree, P.J. Schuck, and S. Cabrini: Functional plasmonic antenna scanning probes fabricated by induced-deposition mask lithography. Nanotechnology 21, 065306 (2010).

    CAS  Article  Google Scholar 

  19. 19.

    H.W.P. Koops, O.E. Hoinkis, M.E.W. Honsberg, R. Schmidt, R. Blum, G. Bottger, A. Kuligk, C. Liguda, and M. Eich: Two-dimensional photonic crystals produced by additive nanolithography with electron beam-induced deposition act as filters in the infrared. Microelectron. Eng. 57–8, 995 (2001).

    Article  Google Scholar 

  20. 20.

    J. Basu, D.B. Carter, R. Divakar, V.B. Shenoy, and N. Ravishankar: Modified electron-beam-induced deposition of metal nanostructure arrays using a parallel electron beam. Appl. Phys. Lett. 93, 133104/1 (2008).

  21. 21.

    J.D. Fowlkes, R. Winkler, B.B. Lewis, M.G. Stanford, H. Plank, and P.D. Rack: Simulation-guided 3D nanomanufacturing via focused electron beam induced deposition. ACS Nano 10, 6163 (2016).

    CAS  Article  Google Scholar 

  22. 22.

    R. Winkler, F.-P. Schmidt, U. Haselmann, J.D. Fowlkes, B.B. Lewis, G. Kothleitner, P.D. Rack, and H. Plank: Direct-write 3D nanoprinting of plasmonic structures. ACS Appl. Mater. Interfaces 9, 8233 (2017).

    CAS  Article  Google Scholar 

  23. 23.

    L. McElwee-White, J. Koller, D. Kim, and T.J. Anderson: Mechanism-based design of precursors for MOCVD. ECS Trans. 25, 161 (2009).

    CAS  Article  Google Scholar 

  24. 24.

    L. McElwee-White: Design of precursors for the CVD of inorganic thin films. Dalton Trans., 5327 (2006).

    Google Scholar 

  25. 25.

    J.D. Wnuk, J.M. Gorham, S.G. Rosenberg, W.F. Van Dorp, T.E. Madey, C.W. Hagen, and D.H. Fairbrother: Electron induced surface reactions of the organometallic precursor trimethyl(methylcyclopentadienyl)plati-num(IV). J. Phys. Chem. C 113, 2487 (2009).

    CAS  Article  Google Scholar 

  26. 26.

    J.D. Wnuk, S.G. Rosenberg, J.M. Gorham, W.F. Van Dorp, C.W. Hagen, and D.H. Fairbrother: Electron beam deposition for nanofabrication: insights from surface science. Surf. Sci. 605, 257 (2011).

    CAS  Article  Google Scholar 

  27. 27.

    N. Silvis-Cividjian, C.W. Hagen, and P. Kruit: Spatial resolution limits in electron-beam-induced deposition. J. Appl. Phys. 98, 084905 (2005).

    Article  CAS  Google Scholar 

  28. 28.

    A. Botman, D.A.M.D. Winter, and J.J.L. Mulders: Electron-beam-induced deposition of platinum at low landing energies. J. Vac. Sci. Technol. B 26, 2460 (2008).

    CAS  Article  Google Scholar 

  29. 29.

    R.M. Thorman, T.P.R. Kumar, D.H. Fairbrother, and O. Ingolfsson: The role of low-energy electrons in focused electron beam induced deposition: four case studies of representative precursors. Beilstein J. Nanotechnol. 6, 1904 (2015).

    CAS  Article  Google Scholar 

  30. 30.

    A. Botman, M. Hesselberth, and J.J.L. Mulders: Investigation of morphological changes in platinum-containing nanostructures created by electron-beam-induced deposition. J. Vac. Sci. Technol. B 26, 2464 (2008).

    CAS  Article  Google Scholar 

  31. 31.

    M.A. Henderson, R.D. Ramsier, and J.T. Yates: Low-energy electron induced decomposition of Fe(CO)5 adsorbed on Ag(111). Surf. Sci. 259, 173 (1991).

    CAS  Article  Google Scholar 

  32. 32.

    R. Cordoba, J. Sese, J.M. De Teresa, and M.R. Ibarra: High-purity cobalt nanostructures grown by focused-electron-beam-induced deposition at low current. Microelectron. Eng. 87, 1550 (2010).

    CAS  Article  Google Scholar 

  33. 33.

    M. Weber, H.W.P. Koops, M. Rudolph, J. Kretz, and G. Schmidt: New compound quantum dot materials produced by electron-beam induced deposition. J. Vac. Sci. Technol. B 13, 1364 (1995).

    CAS  Article  Google Scholar 

  34. 34.

    F. Porrati, R. Sachser, and M. Huth: The transient electrical conductivity of W-based electron-beam-induced deposits during growth, irradiation and exposure to air. Nanotechnology 20, 195301 (2009).

    CAS  Article  Google Scholar 

  35. 35.

    P.D. Rack, S. Randolph, Y. Deng, J. Fowlkes, Y. Choi, and D.C. Joy: Nanoscale electron-beam-stimulated processing. Appl. Phys. Lett. 82, 2326 (2003).

    CAS  Article  Google Scholar 

  36. 36.

    J.J.L. Mulders, L.M. Belova, and A. Riazanova: Electron beam induced deposition at elevated temperatures: compositional changes and purity improvement. Nanotechnology 22, 055302 (2011).

    CAS  Article  Google Scholar 

  37. 37.

    H.W.P. Koops, R. Weiel, D.P. Kern, and T.H. Baum: High-resolution electron-beam induced deposition. J. Vac. Sci. Technol. 66, 477 (1988).

    Article  Google Scholar 

  38. 38.

    S.G. Rosenberg, M. Barclay, and D.H. Fairbrother: Electron induced reactions of surface adsorbed tungsten hexacarbonyl (W(CO)6). Phys. Chem. Chem. Phys. 15, 4002 (2013).

    CAS  Article  Google Scholar 

  39. 39.

    S.G. Rosenberg, M. Barclay, and D.H. Fairbrother: Electron beam induced reactions of adsorbed cobalt tricarbonyl nitrosyl (Co(CO)3NO) molecules. J. Phys. Chem. C 117, 16053 (2013).

    CAS  Article  Google Scholar 

  40. 40.

    S.G. Rosenberg, M. Barclay, and D.H. Fairbrother: Electron induced surface reactions of organometallic metal(hfac)2 precursors and deposit purification. ACS Appl. Mater. Interfaces 6, 8590 (2014).

    CAS  Article  Google Scholar 

  41. 41.

    J.D. Wnuk, J.M. Gorham, S.G. Rosenberg, W.F. Van Dorp, T.E. Madey, C.W. Hagen, and D.H. Fairbrother: Electron beam irradiation of dimethyl-(acetylacetonate) gold(lll) adsorbed onto solid substrates. J. Appl. Phys. 107, 054301/1 (2010).

  42. 42.

    J.D. Barry, M.H. Ervin, J. Molstad, A. Wickenden, T. Brintinger, P. Hoffman, and J. Meingailis: Electron beam induced deposition of low resistivity platinum from Pt(PF3)4. J. Vac. Sci. Technol. B 24, 3165 (2006).

    CAS  Article  Google Scholar 

  43. 43.

    S. Wang, Y.M. Sun, Q. Wang, and J.M. White: Electron-beam induced initial growth of platinum films using Pt(PF3)4. J. Vac. Sci. Technol. B 22, 1803 (2004).

    CAS  Article  Google Scholar 

  44. 44.

    K. Landheer, S. Rosenberg, L. Bernau, P. Swiderek, I. Utke, C. Hagen, and D.H. Fairbrother: Low-energy electron-induced decomposition and reactions of adsorbed tetrakis(trifluorophosphine)platinum [Pt(PF3)]. J. Phys. Chem. C 115, 17452 (2011).

    CAS  Article  Google Scholar 

  45. 45.

    J.A. Spencer, S. Rosenberg, M. Barclay, Y.-C. Wu, L. McElwee-White, and D.H. Fairbrother: Understanding the electron stimulated surface reactions of organometallic complexes to enable design of precursors for electron beam induced deposition. Appl. Phys. A Mater. Sci. Process. 117, 1631 (2014).

    CAS  Article  Google Scholar 

  46. 46.

    N.L. Jeon, W. Lin, M.K. Erhardt, G.S. Girolami, and R.G. Nuzzo: Selective chemical vapor deposition of platinum and palladium directed by monolayers patterned using microcontact printing. Langmuir 13, 3833 (1997).

    CAS  Article  Google Scholar 

  47. 47.

    A. Luisier, I. Utke, T. Bret, F. Cicoira, R. Hauert, S.W. Rhee, P. Doppelt, and P. Hoffmann: Comparative study of Cu-precursors for 3D focused electron beam induced deposition. J. Electrochem. Soc. 151, C590 (2004).

    CAS  Article  Google Scholar 

  48. 48.

    H. Miyazoe, I. Utke, H. Kikuchi, S. Kiriu, V. Friedli, J. Michler, and K. Terashima: Improving the metallic content of focused electron beam-induced deposits by a scanning electron microscope integrated hydrogen-argon microplasma generator. J. Vac. Sci. Technol. B 28, 744 (2010).

    CAS  Article  Google Scholar 

  49. 49.

    P.E. Laibinis, R.L. Graham, H.A. Biebuyck, and G.M. Whitesides: X-Ray damage to CF3CO2-terminated organic monolayers on Si/Au—principal effect of electrons. Science 254, 981 (1991).

    CAS  Article  Google Scholar 

  50. 50.

    C.C. Perry, A.J. Wagner, and D.H. Fairbrother: Electron stimulated C-F bond breaking kinetics in fluorine-containing organic thin films. Chem. Phys. 280, 111 (2002).

    CAS  Article  Google Scholar 

  51. 51.

    Z. Xue, M.J. Strouse, D.K. Shuh, C.B. Knobler, H.D. Kaesz, R.F. Hicks, and R.S. Williams: Characterization of (methylcyclopentadienyl)trime-thylplatinum and low-temperature organometallic chemical vapor deposition of platinum metal. J. Am. Chem. Soc. 111, 8779 (1989).

    CAS  Article  Google Scholar 

  52. 52.

    J.A. Spencer, J.A. Brannaka, M. Barclay, L. McElwee-White, and D.H. Fairbrother: Electron induced surface reactions of 773-allyl ruthenium tricarbonyl bromide [3-C3H5)Ru(CO)3Br1: contrasting the behavior of different ligands. J. Phys. Chem. C 119, 15349–15359 (2015).

    CAS  Article  Google Scholar 

  53. 53.

    R.M. Thorman, J.A. Brannaka, L. McElwee-White, and O. Ingolfsson: Low energy electron-induced decomposition of (ŋ3-C3H5)Ru(CO)3Br, a potential focused electron beam induced deposition precursor with a heteroleptic ligand set. Phys. Chem. Chem. Phys. 19, 13264 (2017).

    CAS  Article  Google Scholar 

  54. 54.

    F.A. Cotton, G. Wilkinson, C. Murillo, and M. Bochmann: Advanced Inorganic Chemistry, 6th ed. (Wiley, New York, 1999).

    Google Scholar 

  55. 55.

    J.A. Spencer, Y.C. Wu, L. McElwee-White, and D.H. Fairbrother: Electron induced surface reactions of cis-Pt(CO)2CI2: a route to focused electron beam induced deposition of pure Pt nanostructures. J. Am. Chem. Soc. 138, 9172 (2016).

    CAS  Article  Google Scholar 

  56. 56.

    J.A. Spencer, M. Barclay, M.J. Gallagher, R. Winkler, I. Unlu, Y.-C. Wu, H. Plank, L. McElwee-White, and D.H. Fairbrother: Comparing postposition reactions of electrons and radicals with Pt nanostructures created by focused electron beam induced deposition. Beilstein J. Nanotechnol. 8, 2410 (2017).

    Article  Google Scholar 

  57. 57.

    J. Warneke, M. Rohdenburg, Y. Zhang, J. Orszagh, A. Vaz, I. Utke, J.T.M. De Hosson, W.F. Van Dorp, and P. Swiderek: Role of NH3 in the electron-induced reactions of adsorbed and solid cisplatin. J. Phys. Chem. C 120, 4112 (2016).

    CAS  Article  Google Scholar 

  58. 58.

    J. Kopyra, C. Koenig-Lehmann, I. Bald, and E. Illenberger: A single slow electron triggers the loss of both chlorine atoms from the anticancer drug cisplatin: implications for chemoradiation therapy. Angew. Chem. Int. Ed. 48, 7904 (2009).

    CAS  Article  Google Scholar 

  59. 59.

    S.N. Pham, J.E. Kuether, M.J. Gallagher, R.T. Hernandez, D.N. Williams, B. Zhi, A.C. Mensch, R.J. Hamers, Z. Rosenzweig, H. Fairbrother, M.O. P. Krause, Z.V.Feng, and C.L. Haynes: Carbon dots: a modular activity to teach fluorescence and nanotechnology at multiple levels. J. Chem. Ed. 94, 1143 (2017).

    CAS  Article  Google Scholar 

  60. 60.

    G.V. Naik, V.M. Shalaev, and A. Boltasseva: Alternative Plasmonic Materials: Beyond Gold and Silver. Adv. Mater. 25, 3264 (2013).

    CAS  Article  Google Scholar 

  61. 61.

    T.H. Baum: Laser chemical vapor deposition of gold: the effect of organ-ometallic structure. J. Electrochem. Soc. 134, 2616 (1987).

    CAS  Article  Google Scholar 

  62. 62.

    H.W.P. Koops, J. Kretz, M. Rudolph, M. Weber, G. Dahm, and K.L. Lee: Characterization and application of materials grown by electron-beam-induced deposition. Jpn. J. Appl. Phys. 33, 7099 (1994).

    CAS  Article  Google Scholar 

  63. 63.

    I. Utke, M.G. Jenke, C. Roling, P.H. Thiesen, V. lakovlev, A. Sirbu, A. Mereuta, A. Caliman, and E. Kapon: Polarisation stabilisation of vertical cavity surface emitting lasers by minimally invasive focused electron beam triggered chemistry. Nanoscale. 3, 2718 (2011).

    CAS  Article  Google Scholar 

  64. 64.

    M.G. Jenke, D. Lerose, C. Niederberger, J. Michler, S. Christiansen, and I. Utke: Toward local growth of individual nanowires on three-dimensional microstructures by using a minimally invasive catalyst tern-plating method. Nano Lett. 11, 4213 (2011).

    CAS  Article  Google Scholar 

  65. 65.

    A. Folch, J. Servat, J. Esteve, J. Tejada, and M. Seco: High-vacuum versus “environmental” electron beam deposition. J. Vac. Sci. Technol. B 14, 2609 (1996).

    CAS  Article  Google Scholar 

  66. 66.

    T. Brintlinger, M.S. Fuhrer, J. Melngailis, I. Utke, T. Bret, A. Perentes, P. Hoffmann, M. Abourida, and P. Doppelt: Electrodes for carbon nano-tube devices by focused electron beam induced deposition of gold. J. Vac. Sci. Technol. B 23, 3174 (2005).

    CAS  Article  Google Scholar 

  67. 67.

    P. Hoffmann, I. Utke, F. Cicoira, B. Dwir, K. Leifer, E. Kapon, and P. Doppelt: Focused electron beam induced deposition of gold and rhodium. Mater. Res. Soc. Symp. Proc. 624, 171 (2001).

    CAS  Article  Google Scholar 

  68. 68.

    I. Utke, P. Hoffmann, B. Dwir, K. Leifer, E. Kapon, and P. Doppelt: Focused electron beam induced deposition of gold. J. Vac. Sci. Technol. S 18, 3168 (2000).

    CAS  Article  Google Scholar 

  69. 69.

    I. Utke, B. Dwir, K. Leifer, F. Cicoira, P. Doppelt, P. Hoffmann, and E. Kapon: Electron beam induced deposition of metallic tips and wires for microelectronics applications. Microelectron. Eng. 53, 261 (2000).

    CAS  Article  Google Scholar 

  70. 70.

    W. Fufi and M. Riihe: Chlor(trifluorphosphan)gold(I), eine einfache fliichtige Goldverbindung. Z Naturforsch. B 47, 591 (1992).

    Google Scholar 

  71. 71.

    J.J.L. Mulders, J.M. Veerhoek, E.G.T. Bosch, and P.H.F. Trompenaars: Fabrication of pure gold nanostructures by electron beam induced deposition with Au(CO)CI precursor: deposition characteristics and primary beam scattering effects. J. Phys. D Appl. Phys. 45, 475301 (2012).

    Article  CAS  Google Scholar 

  72. 72.

    P.G. Jones: The crystal structure of carbonyl gold(I) chloride, (OC)AuCI. Z Naturforsch. B 37, 823 (1982).

    Article  Google Scholar 

  73. 73.

    D. Belli Dell’Amico and F. Calderazzo: Convenient methods for the preparation of anhydrous gold(lll) chloride and chlorocarbonylgold(I). Gazz. Chim.ltal. 103, 1099 (1973).

    Google Scholar 

  74. 74.

    P.D. Tran and P. Doppelt: Gold CVD using trifluorophosphine gold(I) chloride precursor and its toluene solutions. J. Electrochem. Soc. 154, D520 (2007).

    CAS  Article  Google Scholar 

  75. 75.

    M.S. Kharasch and H.S. Isbell: Chemistry of organic gold compounds. I. Aurous chloride carbonyl and a method of linking carbon to carbon. J. Am. Chem. Soc. 52, 2919 (1930).

    CAS  Article  Google Scholar 

  76. 76.

    W. Van Dorp, X. Wu, J. Mulders, S. Harder, P. Rudolf, and J. De Hosson: Gold complexes for focused-electron-beam-induced deposition. Langmuir 30, 12097 (2014).

    Article  CAS  Google Scholar 

  77. 77.

    W.G. Carden, J. Pedziwiatr, K.A. Abboud, and L. McElwee-White: Halide effects on the sublimation temperature of X-Au-L complexes: implications for their use as precursors in vapor phase deposition methods. ACS Appl. Mater. Interfaces 9, 40998 (2017).

    CAS  Article  Google Scholar 

  78. 78.

    D.S. Eggleston, D.F. Chodosh, R.L. Webb, and L.L. Davis: (Tert-butyl isocyanide)chlorogold(I). Acta Crystallogr. C 42, 36 (1986).

    Article  Google Scholar 

  79. 79.

    W. Schneider, K. Angermaier, A. Sladek, and H. Schmidbaur: Ligand influences on the supramolecular chemistry of simple gold(I) complexes. Mononuclear (isonitrile)gold(I) complexes. Z. Naturforsch. B Chem. Sci. 51, 790 (1996).

    CAS  Article  Google Scholar 

  80. 80.

    R.-Y. Liau, T. Mathieson, A. Schier, R.J.F. Berger, N. Runeberg, and H. Schmidbaur: Structural, spectroscopic and theoretical studies of (’butyl-isocyanide)gold(I) iodide. Z. Naturforsch. B Chem. Sci. 57, 881 (2002).

    CAS  Article  Google Scholar 

  81. 81.

    O. Elbjeirami, M.W.A. Gonser, B.N. Stewart, A.E. Bruce, M.R.M. Bruce, T.R. Cundari, and M.A. Omary: Luminescence, structural, and bonding trends upon varying the halogen in isostructural aurophilic dimers. Dalton Trans., 1522 (2009).

    Google Scholar 

  82. 82.

    K. Angermaier, E. Zeller, and H. Schmidbaur: Crystal-structures of chloro (trimethylphosphine)gold(I), chloro(tri-ipropylphosphine)gold(I) and bis (trimethylphosphine)gold(I) chloride. J. Organomet. Chem. 472, 371 (1994).

    CAS  Article  Google Scholar 

  83. 83.

    K. Angermair, G.A. Bowmaker, E.N. de Silva, P.C. Healy, B.E. Jones, and H. Schmidbaur: Vibrational and solid-state phosphorus-31 nuclear magnetic resonance spectroscopic studies of 1:1 complexes of PPh3 with gold(I) halides; crystal structure of [AuBr(PMe3)]. J. Chem. Soc. Dalton Trans., 3121 (1996).

    Google Scholar 

  84. 84.

    A. Ahrland, K. Dreisch, B. Noren, and A. Oskarsson: Crystal structures of lod(triphenylphosphine)gold(I) and bis[iodo(trimethylphosphine)gold (I). Acta Chem. Scand. 41A, 173 (1987).

    Article  Google Scholar 

  85. 85.

    A. Bauer, N.W. Mitzel, A. Schier, D.W.H. Rankin, and H. Schmidbaur: Tris(dimethylamino)phosphane as a new ligand in gold(I) chemistry: synthesis and crystal structures of (Me2N)3PAuCI, [(Me2N)3PAu]3O+BF-3, [Me2N)3PAu]3NP(NMe2)2+3 BF4−2 and the precursor molecule (Me2N)3PNSiMe3. Chem. Ber. 130, 323 (1997).

    CAS  Article  Google Scholar 

  86. 86.

    A. Marashdeh, T. Tiesma, N.J.C. Van Velzen, S. Harder, R.W.A. Havenith, J.T.M. De Hosson, and W.F. Van Dorp: The rational design of a Au(I) precursor for focused electron beam induced deposition. Beilstein J. Nanotechnol. 8, 2753 (2017).

    Article  Google Scholar 

  87. 87.

    F. Porrati, E. Begun, M. Winhold, H.S. Ch, R. Sachser, A.S. Frangakis, and M. Huth: Room temperature L1 0 phase transformation in binary CoPt nanostructures prepared by focused-electron-beam-induced deposition. Nanotechnology 23, 185702 (2012).

    CAS  Article  Google Scholar 

  88. 88.

    R.C. Che, M. Takeguchi, M. Shimojo, W. Zhang, and K. Furuya: Fabrication and electron holography characterization of FePt alloy nano-rods. Appl. Phys. Lett. 87, 223109 (2005).

    Article  CAS  Google Scholar 

  89. 89.

    M.M. Shawrav, D. Belic, M. Gavagnin, S. Wachter, M. Schinnerl, H. D. Wanzenboeck, and E. Bertagnolli: Electron beam-induced CVD of nanoalloys for nanoelectronics. Chem. Vap. Deposition 20, 251 (2014).

    CAS  Article  Google Scholar 

  90. 90.

    M. Winhold, C.H. Schwalb, F. Porrati, R. Sachser, A.S. Frangakis, B. Kampken, A. Terfort, N. Auner, and M. Huth: Binary Pt-Si nanostructures prepared by focused electron-beam-induced deposition. ACS Nano 5, 9675 (2011).

    CAS  Article  Google Scholar 

  91. 91.

    F. Porrati, B. Kampken, A. Terfort, and M. Huth: Fabrication and electrical transport properties of binary Co-Si nanostructures prepared by focused electron beam-induced deposition. J. Appl. Phys. 113, 053707 (2013).

    Article  CAS  Google Scholar 

  92. 92.

    L. Bernau, M. Gabureac, R. Erni, and I. Utke: Tunable nanosynthesis of composite materials by electron-impact reaction. Angew. Chem. Int. Ed. 49, 8880 (2010).

    CAS  Article  Google Scholar 

  93. 93.

    Z. Zhao, A. Fisher, Y. Shen, and D. Cheng: Magnetic properties of Pt-based nanoalloys: a critical review. J. Cluster Sci. 27, 817 (2016).

    CAS  Article  Google Scholar 

  94. 94.

    J.M. Gaskell, A.C. Jones, H.C. Aspinall, S. Przybylak, P.R. Chalker, K. Black, H.O. Davies, P. Taechakumput, S. Taylor, and G. W. Critchlow: Liquid injection ALD and MOCVD of lanthanum aluminate using a bimetallic alkoxide precursor. J. Mater. Chem. 16, 3854 (2006).

    CAS  Article  Google Scholar 

  95. 95.

    M.J. Crosbie, P.J. Wright, H.O. Davies, A.C. Jones, T.J. Leedham, P. O’Brien, and G.W. Critchlow: MOCVD of strontium tantalate thin films using novel bimetallic alkoxide precursors. Chem. Map. Deposition 5, 9 (1999).

    CAS  Article  Google Scholar 

  96. 96.

    S. Abu Bakar, S. Tajammul Hussain, and M. Mazhar: CdTiO3 thin films from an octa-nuclear bimetallic single source precursor by aerosol assisted chemical vapor deposition (AACVD). New J. Chem. 36, 1844 (2012).

    CAS  Article  Google Scholar 

  97. 97.

    S.-G. Shyu, J.-S. Wu, S.-H. Chuang, K.-M. Chi, and Y.-S. Sung: Mixed-metal oxide films via a heterobimetallic complex as an MOCVD single-source precursor. Chem. Commun., 2239 (1996).

    Google Scholar 

  98. 98.

    E.P. Boyd, D.R. Ketchum, H. Deng, and S.G. Shore: Chemical vapor deposition of metallic thin films using homonuclear and heteronuclear metal carbonyls. Chem. Mater. 9, 1154 (1997).

    CAS  Article  Google Scholar 

  99. 99.

    C.L. Czekaj and G.L. Geoffroy: Chemical vapor deposition of iron-cobalt (FeCox) and iron cobalt oxide (FeCoxOy) thin films from iron cobalt car-bonyl clusters. Inorg. Chem. 27, 8 (1988).

    CAS  Article  Google Scholar 

  100. 100.

    F. Porrati, M. Pohlit, J. Miiller, S. Barth, F. Biegger, C. Gspan, H. Plank, and M. Huth: Direct writing of CoFe alloy nanostructures by focused electron beam induced deposition from a heteronuclear precursor. Nanotechnology 26, 475701 (2015).

    CAS  Article  Google Scholar 

  101. 101.

    R. Kumar T.P., P. Weirich, L. Hrachowina, M. Hanefeld, R. Bjornsson, H. R. Hrodmarsson, S. Barth, D.H. Fairbrother, M. Huth, and O. Ingolfsson: Electron interactions with the heteronuclear carbonyl precursor H2FeRu3(CO)13 and comparison with HFeCO3(CO)12: from fundamental gas phase and surface science studies to focused electron beam induced deposition. Beilstein J. Nanotechnol. 9, 555 (2018).

    Article  CAS  Google Scholar 

  102. 102.

    C.J. Gilmore and P. Woodward: Crystal and molecular structure of H2FeRu3(CO)13; a tetrahedral hydridocarbonyl of iron and ruthenium containing asymmetric carbon bridges. J. Chem. Soc. A, 3453 (1971).

    Google Scholar 

  103. 103.

    L-Y. Hsu, A.A. Bhattacharyya, and S.G. Shore: Structure of a second form of 1,2;2,3-di-µ-hydrido-µ3-tetracarbonylferrio-cyclo-tris(tricarbo-nylruthenium)(3Ru-Ru), H2FeRu3(CO)13. Acta Crystallogr. C 40, 722 (1984).

    Article  Google Scholar 

  104. 104.

    T.P. Ragesh Kumar, I. Unlu, S. Barth, O. Ingolfsson, and D. H. Fairbrother: Electron induced surface reactions of HFeCo3(CO)12, a bimetallic precursor for focused electron beam induced deposition (FEBID). J. Phys. Chem. C 122, 2648 (2018).

    Article  CAS  Google Scholar 

  105. 105.

    I. Unlu, J.A. Spencer, K.R. Johnson, R. Thorman, O. Ingolfsson, L. McElwee-White, and D.H. Fairbrother: Electron induced surface reactions of (ŋ5-C5H5)Fe(CO)2Mn(CO)5, a potential heterobimetallic precursor for focused electron beam induced deposition (FEBID). Phys. Chem. Chem. Phys. 20, 7862 (2018).

    CAS  Article  Google Scholar 

  106. 106.

    R.M. Thorman, I. Unlu, K.R. Johnson, R. Bjornsson, L. McElwee-White, H. Fairbrother, and O. Ingolfsson: Low energy electron-induced decomposition of (ŋ5-Cp)Fe(CO)2Mn(CO)5, a potential bimetallic precursor for focused electron beam induced deposition of alloy structures. Phys. Chem. Chem. Phys. 20, 5644 (2018).

    CAS  Article  Google Scholar 

  107. 107.

    Y.S. Won, Y.S. Kim, T.J. Anderson, and L. McElwee-White: Computational study of the gas phase reactions of isopropylimido and allylimido tungsten precursors for chemical vapor deposition of tungsten carbonitride films: implications for the choice of carrier gas. Chem. Mater. 20, 7246 (2008).

    CAS  Article  Google Scholar 

  108. 108.

    Y.S. Won, Y.S. Kim, T.J. Anderson, L.L. Reitfort, I. Ghiviriga, and L. McElwee-White: Homogeneous decomposition of aryl-and alkylimido precursors for the CVD of tungsten nitride: a combined density functional theory and experimental study. J. Am. Chem. Soc. 128, 13781 (2006).

    CAS  Article  Google Scholar 

  109. 109.

    S. Engmann, M. Stano, P. Papp, M.J. Brunger, S. Matejcik, and O. Ingolfsson: Absolute cross sections for dissociative electron attachment and dissociative ionization of cobalt tricarbonyl nitrosyl in the energy range from 0 eV to 140 eV. J. Chem. Phys. 138, 044305/1 (2013).

  110. 110.

    C.R. Arumainayagam, H.-L. Lee, R.B. Nelson, D.R. Haines, and R. P. Gunawardane: Low-energy electron-induced reactions in condensed matter. Surf. Sci. Rep. 65, 1 (2010).

    CAS  Article  Google Scholar 

Download references

Acknowledgments

D.H.F. and L.M.W. thank the National Science Foundation for support of this work through the linked collaborative grants CHE-1607621 and CHE-1607547. Support of preliminary studies was provided by the donors of the American Chemical Society Petroleum Research Fund (PRF Grant # 54519-ND5) and by FEI.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Lisa McElwee-White.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Carden, W.G., Lu, H., Spencer, J.A. et al. Mechanism-based design of precursors for focused electron beam-induced deposition. MRS Communications 8, 343–357 (2018). https://doi.org/10.1557/mrc.2018.77

Download citation