Hot electrons coupling-enhanced photocatalysis of super black carbon aerogels/titanium oxide composite

Abstract

To evaluate whether the photocatalysis efficiency of titanium oxide (TiO2) increases under the shading of carbon aerogel (CA), super black CA/ TiO2 composite sheets were directly fabricated by physical mixing of CA, TiO2 powder, and binder. It was found that the photocatalysis efficiency of composite sheets were higher than that of pure TiO2 sheet. We attribute this phenomenon to the hot electrons coupling between CA and TiO2. Besides the direct light absorption of TiO2, the hot electrons generating and indirect energy transfer from CA to TiO2 may enhance the photocatalysis efficiency of TiO2.

This is a preview of subscription content, access via your institution.

Figure 1
Figure 2
Table I
Figure 3
Figure 4
Table II

References

  1. 1.

    S.S. Turkar, D.B. Bharti, and G.S. Gaikwad: Various methods involved in waste water treatment to control water pollution. J. Chem. Pharm. Res. 3, 58 (2011).

    CAS  Google Scholar 

  2. 2.

    X. Cheng, Z. Wang, X. Jiang, T. Li, Cher Hon Lau, Z. Guo, J. Ma, and L. Shao: Towards sustainable ultrafast molecular-separation membranes: from conventional polymers to emerging materials. Progress Mater. Sci. 92, 258–283 (2018).

    CAS  Article  Google Scholar 

  3. 3.

    W. Brostow and H.E.H. Lobland: Materials: Introduction and Applications (WILEY, Hoboken, USA, 2017).

    Google Scholar 

  4. 4.

    L. Zhang, M. Qin, W. Yu, Q. Zhang, H. Xie, Z. Sun, Q. Shao, X. Guo, L. Hao, Y. Zheng, and Z. Guo: Heterostructured TiO2/WO3 nanocomposites for photocatalytic degradation of toluene under visible light. J. Electrochem. Soc. 164, H1086–H1090 (2017).

    CAS  Article  Google Scholar 

  5. 5.

    W. Zhou, Q. Liu, Z. Zhu, and J. Zhang: Preparation and properties of vanadium-doped TiO2 photocatalysts. J. Phys. D: Appl. Phys. 43, 035301 (2010).

    Article  Google Scholar 

  6. 6.

    M. Ahmadi and M.J-F. Guinel: Doping of TiO2 nanopowders with vanadium for the reduction of its band gap reaching the visible light spectrum region. MRS Commun. 4, 73–76 (2014).

    CAS  Article  Google Scholar 

  7. 7.

    C. Wang, M. Zhao, J. Li, J. Yu, S. Sun, S. Ge, X. Guo, F. Xie, B. Jiang, Evan K. Wujcik, Y. Huang, N. Wang, and Z. Guo: Silver nanoparticles/graphene oxide decorated carbon fiber synergistic reinforcement in epoxy-based composites. Polymer 131, 263–271 (2017).

    CAS  Article  Google Scholar 

  8. 8.

    B. Song, T. Wang, H. Sun, Q. Shao, J. Zhao, K. Song, L. Hao, L. Wang, and Z. Guo: Two-step hydrothermally synthesized carbon nanodots/WO3 photocatalysts with enhanced photocatalytic performance. Dalton Trans. 46, 15769–15777 (2017).

    CAS  Article  Google Scholar 

  9. 9.

    T-F.M. Chang, W-H. Lin, C-Y. Chen, Y-J. Hsu, and M. Sone: The hydrobaric effect on cathodically deposited titanium dioxide photocatalyst. MRS Commun. 7, 189–192 (2017).

    CAS  Article  Google Scholar 

  10. 10.

    Y. Park, W. Kim, H. Park, Y. Tachikawa, T. Majima, and W. Choi: Carbon-doped TiO2 photocatalysized without using an external carbon precursor and the visible light activity. Appl. Catal. B: Environ. 91, 355–361 (2009).

    CAS  Article  Google Scholar 

  11. 11.

    H. Zhao, W. Deng, and Y. Li: Atomic layer deposited TiO2 ultrathin layer on Ag-ZnO nanorods for stable and efficient photocatalytic degradation of RhB. Adv. Compos. Hybrid. Mater. doi: org/10.1007/s42114-017-0015-0, published online 27 Nov 2017.

    Google Scholar 

  12. 12.

    L. Zhang, W. Yu, C. Han, J. Guo, Q. Zhang, H. Xie, Q. Shao, Z. Sun, and Z. Guo: Large scaled synthesis of heterostructured electrospun TiO2/SnO2 nanofibers with an enhanced photocatalytic activity. J. Electrochem. Soc. 164, H651–H656 (2017).

    CAS  Article  Google Scholar 

  13. 13.

    Y. Fan, D. Han, Z. Song, Z. Sun, X. Dong, and L. Niu: Regulations of silver halide nanostructure and composites on photocatalysis. Adv. Compos. Hybrid. Mater. dio: 10.1007/s42114-017-0005-2, published on line 27 Nov 2017.

    Google Scholar 

  14. 14.

    J.J. Sene, W.A. Zeltner, and M.A. Anderson: Fundamental photoelectrocatalytic and electrophoretic mobility studies of TiO2 and V-doped TiO2 thin film electrode materials. J. Phys. Chem. B 107, 1597–1603 (2003).

    CAS  Article  Google Scholar 

  15. 15.

    A. Du, B. Zhou, Z. Zhang, and J. Shen: A special material or a new state of matter: a review and reconsideration of the aerogel. Materials 6, 941–968 (2013).

    CAS  Article  Google Scholar 

  16. 16.

    M. Schwan and L. Ratke: Flexible carbon aerogels. Carbon. N. Y. 2, 22 (2016).

    Google Scholar 

  17. 17.

    J. Feng, J. Feng, Y. Jiang, and C. Zhang: Ultralow density carbon aerogels with low thermal conductivity up to 2000 °C. Mater. Lett. 65, 3454–3456 (2011).

    CAS  Article  Google Scholar 

  18. 18.

    H. Sun, Z. Xu, and C. Gao: Multifunctional, ultra-flyweight, synergistically assembled carbon aerogels. Adv. Mater. 25, 2554–2560 (2013).

    CAS  Article  Google Scholar 

  19. 19.

    K. Guo, Z. Hu, H. Song, X. Du, L. Zhong, and X. Chen: Low-density graphene/carbon composite aerogels prepared at ambient pressure with high mechanical strength and low thermal conductivity. RSC Adv. 5, 5197–5204 (2014).

    Article  Google Scholar 

  20. 20.

    P. Xie, W. Sun, Y. Liu, A. Du, Z. Zhang, G. Wu, and R. Fan: Carbon aerogels towards new candidates for double negative metamaterials of low density. Carbon 129, 598–606 (2018).

    CAS  Article  Google Scholar 

  21. 21.

    L. Zubizarreta, J.A. Menéndez, N. Job, J.P. Marco-Lozar, J.P. Pirard, J.J. Pis, A. Linares-Solano, D. Cazorla-Amorós, and A. Arenillas: Ni-doped carbon xerogels for H2 storage. Carbon. N. Y. 48, 2722–2733 (2010).

    CAS  Article  Google Scholar 

  22. 22.

    S.J. Kim, S.W. Hwang, and S.H. Hyun: Preparation of carbon aerogel electrodes for supercapacitor and their electrochemical characteristics. J. Mater. Sci. 40, 725–731 (2005).

    CAS  Article  Google Scholar 

  23. 23.

    H. Tian, J. Wu, W. Zhang, S. Yang, F. Li, Y. Qi, R. Zhou, X. Qi, L. Zhao, and X. Wang: High performance of Fe nanoparticles/carbon aerogel sorbents for H2S removal. Chem. Eng. J. 313, 1051–1060 (2017).

    CAS  Article  Google Scholar 

  24. 24.

    H. Wang, A. Du, Z. Zhang, B. Zhou, and J. Shen: An optical dustbin made by the subwavelength induced super-black carbon aerogels. J. Mater. Res. 32, 3524–3531 (2017).

    CAS  Article  Google Scholar 

  25. 25.

    F. Ran, X. Yang, and L. Shao: Recent progress in carbon-based nanoarchitectures for advanced supercapacitors. Adv. Compos. Hybrid. Mater. 1, 32–55 (2018).

    CAS  Article  Google Scholar 

  26. 26.

    S.R. Meier, M.L. Korwi, and C.I. Merzbacher: Carbon aerogel a new nonreflective material for the infrared. Appl. Opt. 39, 3940–3944 (2000).

    CAS  Article  Google Scholar 

  27. 27.

    C.I. Merzbacher, S.R. Meier, J.R. Pierce, and M.L. Korwin: Carbon aerogels as broadband non-reflective materials. J. Non-Cryst. Solids 285, 210–215 (2001).

    CAS  Article  Google Scholar 

  28. 28.

    W. Sun, A. Du, Y. Feng, J. Shen, S. Huang, J. Tang, and B. Zhou: Super black material from low-density carbon aerogels with subwavelength structures. ACS Nano 10, 9123–9128 (2016).

    CAS  Article  Google Scholar 

  29. 29.

    Y. Zhu, S. Murali, W. Cai, X. Li, J.W. Suk, J.R. Potts, and R.S. Ruoff: Graphene and graphene oxide: synthesis, properties, and applications. Adv. Mater. 22, 3906–3924 (2010).

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Ai Du.

Additional information

These authors contributed equally to this work and should be considered co-first authors.

Supplementary material

Supplementary material

The supplementary material for this article can be found at https://doi.org/10.1557/mrc.2018.73

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wang, H., He, X., Zhou, B. et al. Hot electrons coupling-enhanced photocatalysis of super black carbon aerogels/titanium oxide composite. MRS Communications 8, 521–526 (2018). https://doi.org/10.1557/mrc.2018.73

Download citation