Anode performance of hydrothermally grown carbon nanostructures and their molybdenum chalcogenides for Li-ion batteries


Three different hydrothermally grown carbonaceous materials and their molybdenum chalcogenides derived from glucose (HTC, HTC-MoO2, HTC-MoS2) were investigated to evaluate their potential as Li-ion battery anodes. All tested materials exhibited good cycling performance at a current density of 100 mA/g and showed high coulombic efficiency, < 98%, after the 50th cycle. Reversible charge capacities of HTC, HTC-MoO2, and HTC-MoS2 were 296, 266, and 484 mAh/g, respectively, after 50 successive cycles. This study demonstrated that the HTC-MoS2 showed the highest reversible charge capacity which promises to be a good candidate for an environmentally friendly anode material for Li-ion batteries.

This is a preview of subscription content, access via your institution.

Figure 1
Table I
Figure 2
Figure 3
Table II
Figure 4


  1. 2.

    M.S. Whittingham: Lithium batteries and cathode materials. Chem. Rev. 104, 4271 (2004).

    CAS  Article  Google Scholar 

  2. 3.

    H. Kim, H. Kim, S.-W. Kim, K.-Y. Park, J. Kim, S. Jeon, and K. Kang: Nano-graphite platelet loaded with LiFePO4 nanoparticles used as the cathode in a high performance Li-ion battery. Carbon N. Y. 50, 1966 (2012).

    CAS  Article  Google Scholar 

  3. 4.

    Y. Shi, B. Guo, S.A. Corr, Q. Shi, Y.-S. Hu, K.R. Heier, L. Chen, R. Seshadri, and G.D. Stucky: Ordered mesoporous metallic MoO2 materials with highly reversible lithium storage capacity. Nano Lett. 9, 4215 (2009).

    CAS  Article  Google Scholar 

  4. 5.

    G.H. Waller, S.Y. Lai, B.H. Rainwater, and M. Liu: Hydrothermal synthesis of LiMn2O4 onto carbon fiber paper current collector for binder free lithium-ion battery positive electrodes. J. Power Sour. 251, 411 (2014).

    CAS  Article  Google Scholar 

  5. 6.

    W. Fang, H. Zhao, Y. Xie, J. Fang, J. Xu, and Z. Chen: Facile hydrothermal synthesis of VS2/graphene nanocomposites with superior high-rate capability as lithium-ion battery cathodes. ACS Appl. Mater. Interfaces 7, 13044 (2015).

    CAS  Article  Google Scholar 

  6. 7.

    M. Agostini, S. Brutti, and J. Hassoun: High voltage Li-ion battery using exfoliated graphite/graphene nanosheets anode. ACS Appl. Mater. Interfaces 8, 10850 (2016).

    CAS  Article  Google Scholar 

  7. 8.

    M. Büyükyazi, and S. Mathur: 3D nanoarchitectures of a-LiFeO2 and a-LiFeO2/C nanofibers for high power lithium-ion batteries. Nano Energy 13, 28 (2015).

    Article  Google Scholar 

  8. 9.

    Y. Chen, X. Di, C. Ma, C. Zhu, P. Gao, J. Li, C. Sun, and Q. Ouyang: Graphene-MoO2 hierarchical nanoarchitectures: in situ reduction synthesis and high rate cycling performance as lithium-ion battery anodes. RSC Adv. 3, 17659 (2013).

    CAS  Article  Google Scholar 

  9. 10.

    L. Zeng, C. Zheng, C. Deng, X. Ding, and M. Wei: MoO2-ordered mesoporous carbon nanocomposite as an anode material for lithium-ion batteries. ACS Appl. Mater. Interfaces 5, 2182 (2013).

    CAS  Article  Google Scholar 

  10. 11.

    J. Xiang, D. Dong, F. Wen, J. Zhao, X. Zhang, L. Wang, and Z. Liu: Microwave synthesized self-standing electrode of MoS2 nanosheets assembled on graphene foam for high-performance Li-ion and Na-ion batteries. J. Alloys Compd. 660, 11 (2016).

    CAS  Article  Google Scholar 

  11. 12.

    H. Liu, X. Chen, L. Deng, X. Su, K. Guo, and Z. Zhu: Preparation of ultrathin 2D MoS2/graphene heterostructure assembled foam-like structure with enhanced electrochemical performance for lithium-ion batteries. Electrochim. Acta 206, 184 (2016).

    CAS  Article  Google Scholar 

  12. 13.

    A.P. Cohn, L. Oakes, R. Carter, S. Chatterjee, A.S. Westover, K. Share, and C.L. Pint: Assessing the improved performance of freestanding, flexible graphene and carbon nanotube hybrid foams for lithium ion battery anodes. Nanoscale. 6, 4669 (2014).

    CAS  Article  Google Scholar 

  13. 14.

    H. Simsir, N. Eltugral, and S. Karagoz: Hydrothermal carbonization for the preparation of hydrochars from glucose, cellulose, chitin, chitosan and wood chips via low-temperature and their characterization. Bioresour. Technol. 246(Suppl. C), 82 (2017).

    CAS  Article  Google Scholar 

  14. 15.

    Q. Wang, H. Li, L. Chen, and X. Huang: Monodispersed hard carbon spherules with uniform nanopores. Carbon N. Y. 39, 2211 (2001).

    CAS  Article  Google Scholar 

  15. 16.

    M.M. Titirici, R.J. White, N. Brun, V.L. Budarin, D.S. Su, F. del Monte, J.H. Clark, and M.J. MacLachlan: Sustainable carbon materials. Chem. Soc. Rev. 44, 250 (2015).

    CAS  Article  Google Scholar 

  16. 17.

    M. Ihsan, H. Wang, S.R. Majid, J. Yang, S.J. Kennedy, Z. Guo, and H.K. Liu: MoO2/Mo2C/C spheres as anode materials for lithium ion batteries. Carbon N. Y. 96, 1200 (2016).

    CAS  Article  Google Scholar 

  17. 18.

    Y. Sun, X. Hu, W. Luo, and Y. Huang: Ultrafine MoO2 nanoparticles embedded in a carbon matrix as a high-capacity and long-life anode for lithium-ion batteries. J. Mater. Chem. 22, 425 (2012).

    CAS  Article  Google Scholar 

  18. 19.

    L. Yang, L. Liu, Y. Zhu, X. Wang, and Y. Wu: Preparation of carbon coated MoO2 nanobelts and their high performance as anode materials for lithium ion batteries. J. Mater. Chem. 22, 13148 (2012).

    CAS  Article  Google Scholar 

  19. 20.

    A. Bhaskar, M. Deepa, and T. Narasinga Rao: MoO2/multiwalled carbon nanotubes (MWCNT) hybrid for use as a Li-ion battery anode. ACS Appl. Mater. Interfaces 5, 2555 (2013).

    CAS  Article  Google Scholar 

  20. 21.

    G. Yuan, G. Wang, H. Wang, and J. Bai: Half-cell and full-cell investigations of 3D hierarchical MoS2/graphene composite on anode performance in lithium-ion batteries. J. Alloys Compd. 660, 62 (2016).

    CAS  Article  Google Scholar 

  21. 22.

    S.K. Das: Coaxial growth of carbon coated MoS2 nanoparticles on carbon nanotube and their electrochemical evaluation. Mater. Lett. 130, 240 (2014).

    CAS  Article  Google Scholar 

  22. 23.

    Z. Wang, G. Wei, K. Ozawa, Y. Cai, Z. Cheng, and H. Kimura: Nanoporous MoS2/C composites for high performance lithium ion battery anode material. Electrochim. Acta 239, 74 (2017).

    CAS  Article  Google Scholar 

  23. 24.

    Z. Li, Z. Xu, X. Tan, H. Wang, C.M. Holt, T. Stephenson, B.C. Olsen, and D. Mitlin: Mesoporous nitrogen-rich carbons derived from protein for ultra-high capacity battery anodes and supercapacitors. Energy Environ. Sci. 6, 871 (2013).

    CAS  Article  Google Scholar 

  24. 25.

    Z. Xing, Z. Ju, Y. Zhao, J. Wan, Y. Zhu, Y. Qiang, and Y. Qian: One-pot hydrothermal synthesis of Nitrogen-doped graphene as high-performance anode materials for lithium ion batteries. Sci. Rep. 6, 1 (2016).

    Article  Google Scholar 

  25. 26.

    J.J. Auborn, and Y.L. Barberio: Lithium intercalation cells without metallic lithium. J. Electrochem. Soc. USA 134, 638 (1987).

    CAS  Article  Google Scholar 

  26. 27.

    L. Ma, X. Zhou, L. Xu, X. Xu, L. Zhang, and W. Chen: Chitosan-assisted fabrication of ultrathin MoS2/graphene heterostructures for Li-ion battery with excellent electrochemical performance. Electrochim. Acta 167, 39 (2015).

    CAS  Article  Google Scholar 

  27. 28.

    J. Xiao, D. Choi, L. Cosimbescu, P. Koech, J. Liu, and J.P. Lemmon: Exfoliated MoS2 nanocomposite as an anode material for lithium ion batteries. Chem. Mater. 22, 4522 (2010).

    CAS  Article  Google Scholar 

  28. 29.

    H. Liu, D. Su, R. Zhou, B. Sun, G. Wang, and S.Z. Qiao: Highly ordered mesoporous MoS2 with expanded spacing of the (002) crystal plane for ultrafast lithium ion storage. Adv. Energy Mater. 2, 970 (2012).

    CAS  Article  Google Scholar 

Download references


The financial support by the Karabuk University (Project ID number: KBU BAP-17-DR-047) and the University of Cologne is gratefully acknowledged. S. M. acknowledges a strategic collaboration between the Christiansen research group at Helmholtz-Zentrum Berlin für Materialien und Energie and the Research Group Mathur.

Author information



Corresponding author

Correspondence to Nurettin Eltugral.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Simsir, H., Eltugral, N., Frohnhoven, R. et al. Anode performance of hydrothermally grown carbon nanostructures and their molybdenum chalcogenides for Li-ion batteries. MRS Communications 8, 610–616 (2018).

Download citation