Assessing failure in epitaxially encapsulated micro-scale sensors using micro and nano x-ray computed tomography

Abstract

Millions of micro electro mechanical system sensors are fabricated each year using an ultra-clean process that allows for a vacuum-encapsulated cavity. These devices have a multi-layer structure that contains hidden layers with highly doped silicon, which makes common imaging techniques ineffective. Thus, examining device features post-fabrication, and testing, is a significant challenge. Here, we use a combination of micro- and nano-scale x-ray computed tomography to study device features and assess failure mechanisms in such devices without destroying the ultra-clean cavity. This provides a unique opportunity to examine surfaces and trace failure mechanisms to specific steps in the fabrication process.

This is a preview of subscription content, access via your institution.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

References

  1. 1.

    J. Martin: High Volume Manufacturing and Field Stability of MEMS Products: Springer Handbook of Nanotechnology (Springer-Verlag, Berlin, Germany, 2007), pp. 1749–1776.

    Google Scholar 

  2. 2.

    M. Perlmutterand S. Breit: In The future of the MEMS inertial sensor performance, design and manufacturing, DGON Inertial Sensors and Syst, Karlsruhe, 2016; pp. 1–12.

    Google Scholar 

  3. 3.

    P.J. de Veen, C. Bos, D.R. Hoogstede, C.Th. A. Revenberg, J. Liljeholm, and T. Ebefors: High-resolution x-ray computed tomography of through silicon vias for RF MEMS integrated passive device applications. Microelectron. Reliab. 55, 1644 (2015).

    Article  Google Scholar 

  4. 4.

    C.A. Manier, K. Zoschke, H. Oppermann, D. Ruffieux, S. Dalla Piazza, T. Suni, J. Dekker, and G. Allegato: In Vacuum packaging at wafer level for MEMS using gold-tin metallurgy, European Microelectronics Packaging Conf, Grenoble, 2013; pp. 1–8.

    Google Scholar 

  5. 5.

    Y. Wang: High-Resolution 3D Imaging and Material Analysis with Transmission X-Ray Microscopy and Nano-Ct: Characterization of Materials (John Wiley and Sons, Hoboken, 2012), pp. 1–10.

    Google Scholar 

  6. 6.

    M. Bajura, G. Boverman, J. Tan, G. Wagenbreth, C.M. Rogers, M. Feser, J. Rudati, A. Tkachuk, S. Aylward, and P. Reynolds: In Imaging Integrated Circuits with x-ray Microscopy, Proc. 36th GOMACTech Conf, Florida, USA, 2011.

    Google Scholar 

  7. 7.

    E. Zschech, W. Yun, and G. Schneider: High-resolution x-ray imaging-a powerful nondestructive technique for applications in semiconductor industry. Appl. Phys. A 92, 423 (2008).

    CAS  Article  Google Scholar 

  8. 8.

    C. Wyon: X-ray metrology for advanced microelectronics. Eur. Phys. J. Appl. Phys. 49, 20101 (2010).

    Article  Google Scholar 

  9. 9.

    J. Deng, Y.P. Hong, S. Chen, Y.S. Nashed, T. Peterka, A.J. Levi, J. Damoulakis, S. Saha, T. Eiles, and C. Jacobsen: Nanoscalex-ray imaging of circuit features without wafer etching. Phys. Rev. 695, 104111 (2017).

    Article  Google Scholar 

  10. 10.

    E. Zschech and A. Diebold: In Metrology and failure analysis for 3D IC integration, AIP Conf. Proc, 2011; pp. 233–239.

    Google Scholar 

  11. 11.

    A. Partridge and M. Lutz: In Episeal pressure sensor and method for making an episeal pressure sensor. U.S. Patent #6928879 (2005).

    Google Scholar 

  12. 12.

    R.N. Candler, M.A. Hopcroft, B. Kim, W.-T. Park, R. Melamuf, M. Agarwal, G.Y.A. Partridge, M. Lutz, and T.W. Kenny: Long-term and accelerated life testing of a novel single-wafer vacuum encapsulation for MEMS resonators. J. Microelectromech. Syst. 15, 1446 (2006).

    Article  Google Scholar 

  13. 13.

    B. Kim, R.N. Candler, M.A. Hopcroft, M. Agarwal, W.-T. Park, and T. W. Kenny: Frequency stability of wafer-scale film encapsulated silicon based MEMS resonators. Sens Actuators A 136, 125 (2007).

    CAS  Article  Google Scholar 

  14. 14.

    E. Ng, H.K. Lee, C.H. Ahn, R. Melamud, and T.W. Kenny: In Stability measurements of silicon MEMS resonant thermometers, 2011 IEEE Sensors Proc, Limerick, 2011; pp. 1257–1260.

    Google Scholar 

  15. 15.

    Y. Yang, E.J. Ng, Y. Chen, L.B. Flader, and T.W. Kenny: A unified epi-seal process for fabrication of high-stability microelectromechanical devices. J. Microelectromech. Syst. 25, 489 (2016).

    CAS  Article  Google Scholar 

  16. 16.

    Y. Chen, L.B. Flader, D.D. Shin, C.H. Ahn, J. Rodriguez, and T.W. Kenny: Robust method of fabricating epitaxially encapsulated MEMS devices with large gaps. J. Microelectromech. Syst. 26, 1235 (2017).

    CAS  Article  Google Scholar 

  17. 17.

    L.B. Flader, Y. Chen, D.D. Gerrard, and T.W. Kenny: In Wafer-scale encapsulation of fully differential electrodes for mutli-axis inertial sensing, IEEE Transducers Proc, Kaohsiung, 2017; pp. 591–594.

    Google Scholar 

  18. 18.

    D.B. Heinz, V.A. Hong, C.H. Ahn, E.J. Ng, Y. Yang, and T.W. Kenny: Experimental investigation into stiction forces and dynamic mechanical anti-stiction solutions in ultra-clean encapsulated MEMS devices. J. Microelectromech. Syst. 25, 469 (2016).

    CAS  Article  Google Scholar 

  19. 19.

    R. Maboudian and R. T. Howe: Critical review: adhesion in surface micro-mechanical structures. J. Vac. Sci. Technol. 615, 1 (1997).

    Article  Google Scholar 

  20. 20.

    Y. X. Zhuang and A. Menon: On the stiction of MEMS materials. Tribol. Lett 19, 111 (2005).

    CAS  Article  Google Scholar 

  21. 21.

    D.M. Tanner, J.A. Walraven, K. Helgesen, L.W. Irwin, F. Brown, N.F. Smith, and N. Masters: In MEMS reliability in shock environments, (Proc. 38th Annual IEEE Int. Reliability Physics Symp.), 2000; pp. 129–138.

    Google Scholar 

  22. 22.

    V.A. Hong, S. Yoneoka, M.W. Messana, A.B. Graham, J.C. Salvia, T. T. Branchflower, E. Ng, and T.W. Kenny: Fatigue experiments on single crystal silicon in an oxygen-free environment. J. Microelectromech. Syst. 24, 351 (2015).

    CAS  Article  Google Scholar 

  23. 23.

    C.L. Muhlstein, E.A. Stach, and R.O. Ritchie: A reaction-layer mechanism for the delayed failure of micron-scale polycrystalline silicon structural films subjected to high-cycle fatigue loading. Acta Mater. 50, 3579 (2002).

    CAS  Article  Google Scholar 

  24. 24.

    B.L. Henke, E.M. Gullikson, and J.C. Davis: X-ray interactions: photoab-sorption, scattering, transmission, and reflection at E = 50-30000 eV, Z = 1-92. At. Data Nucl. Data Tables 54, 181 (1993).

    CAS  Article  Google Scholar 

  25. 25.

    Y. Liu, F. Meirer, P.A. Williams, J. Wang, J.C. Andrews, and P. Pianetta: TXM-Wizard: a program for advanced data collection and evaluation in full-field transmission x-ray microscopy. J. Synchroton. Radiat 19, 281 (2012).

    CAS  Article  Google Scholar 

  26. 26.

    D.L. Christensen, C.H. Ahn, V.A. Hong, E.J. Ng, Y. Yang, B.J. Lee, and T.W. Kenny: In Hermetically encapsulated differential resonant accelerometer, 2013 Transducers & Eurosensors: Solid-State Sensors, Actuators and Microsystems, 2013; pp. 606–609.

    Google Scholar 

  27. 27.

    D.D. Shin, C.H. Ahn, Y. Chen, D.L. Christensen, L.B. Flader, and T. W. Kenny: In Environmentally robust differential resonant accelerometer in a wafer-scale encapsulation process, 2017 IEEE MEMS Proceedings, Las Vegas, 2017; pp. 17–20.

    Google Scholar 

  28. 28.

    L.B. Flader, Y. Chen, D.D. Shin, D.B. Heinz, L. Comenencia Ortiz, A. L. Alter, W. Park, K.E. Goodson, and T.W. Kenny: In Micro-tethering for in-process stiction mitigation of highly compliant structures, 2017 IEEE MEMS Proceedings, Las Vegas, 2017; pp. 675–678.

    Google Scholar 

  29. 29.

    M.M. Lee, J. Yao and M.C. Wu: In Silicon profile transformation and side-wall roughness reduction using hydrogen annealing, IEEE MEMS, 2005; pp. 596–599.

    Google Scholar 

Download references

Acknowledgments

This work was supported by the Defense Advanced Research Projects Agency (DARPA) Precision Navigation and Timing program (PNT) managed by Dr. Ron Polcawich under contract # N66001-12-1-4260. The fabrication work was performed at the Stanford Nanofabrication Facility (SNF), which was supported by the National Science Foundation through the National Nanotechnology Infrastructure Network under Grant ECS-9731293. The author would also like to thank the National Science Foundation and the Graduate Research Program (NSF-GRFP). Use of the Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, is supported by the US Department of Energy Office of Science, Office of Basic Energy Sciences under Contract No. DE-AC02-76SF00515.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Lizmarie Comenencia Ortiz.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ortiz, L.C., Heinz, D.B., Flader, I.B. et al. Assessing failure in epitaxially encapsulated micro-scale sensors using micro and nano x-ray computed tomography. MRS Communications 8, 275–282 (2018). https://doi.org/10.1557/mrc.2018.70

Download citation