Catalysts in metal-air batteries

Abstract

Metal-air batteries promise higher energy densities than state-of-the-art Li-ion batteries and have, therefore, received significant research attention lately. The most distinguishing feature of this technology is that it takes advantage of reversible conversion reactions of O2 or other air components (such as N2 or CO2) at the cathode. To promote these reactions, catalysts are often needed. A large number of materials have been studied for this purpose. In the present paper, we discuss the roles played by catalysts in metal-air battery systems. In particular, we choose to focus the discussions on the Li-O2 batteries as they are most intensely studied in the literature. Within this context, catalysts are often shown effective to facilitate the oxygen (O2) reduction reactions and/or O2 evolution reactions. The overall cell performance as measured by the round-trip efficiencies and charge/discharge rates can be significantly improved by the incorporation of catalysts. However, the presence of catalysts is also found to complicate the chemical reactions as they often exhibit activities toward parasitic chemical reactions such as electrolyte and electrode decompositions. The issue is especially acute in aprotic Li-O2 batteries, where organic electrolytes and reactive O2 species are mixed. In addition to heterogeneous catalysts, we also discuss the roles played by homogeneous catalysts as redox mediators, which are effective to promote redox reactions that are critical to energy storage applications.

This is a preview of subscription content, access via your institution.

Figure 1.
Table I.
Table II.
Figure 2.
Table III.
Figure 3.
Table IV.
Table V.
Figure 4.

References

  1. 1.

    M.S. Whittingham: Electrical energy-storage and intercalation chemistry. Science 192, 1126 (1976).

    CAS  Google Scholar 

  2. 2.

    Y.C. Lu, B.M. Gallant, D.G. Kwabi, J.R. Harding, R.R. Mitchell, M. S. Whittingham, and Y. Shao-Horn: Lithium-oxygen batteries: bridging mechanistic understanding and battery performance. Energy Environ. Sci. 6, 750 (2013).

    CAS  Article  Google Scholar 

  3. 3.

    C.X. Zu and H. Li: Thermodynamic analysis on energy densities of batteries. Energy Environ. Sci. 4, 2614 (2011).

    CAS  Article  Google Scholar 

  4. 4.

    L.X. Yuan, Z.H. Wang, W.X. Zhang, X.L. Hu, J.T. Chen, Y.H. Huang, and J.B. Goodenough: Development and challenges of LiFePO4 cathode material for lithium-ion batteries. Energy Environ. Sci. 4, 269 (2011).

    CAS  Article  Google Scholar 

  5. 5.

    M.A. Akhtar, V. Sharma, S. Biswasa, and A. Chandra: Tuning porous nanostructures of MnCo2O4 for application in supercapacitors and catalysis. RSC Adv. 6, 96296 (2016).

    CAS  Article  Google Scholar 

  6. 6.

    M. Alhabeb, M. Beidaghi, K.L. Van Aken, B. Dyatkin, and Y. Gogotsi: High-density freestanding graphene/carbide-derived carbon film electrodes for electrochemical capacitors. Carbon N. Y. 118, 642 (2017).

    CAS  Article  Google Scholar 

  7. 7.

    V. Sharma, I. Singh, and A. Chandra: Hollow nanostructures of metal oxides as next generation electrode materials for supercapacitors. Sci. Rep. 8, 1307 (2018).

    Article  CAS  Google Scholar 

  8. 8.

    A.M. Navarro-Suarez, K.L. Van Aken, T. Mathis, T. Makaryan, J. Yan, J. Carretero-Gonzalez, T. Rojo, and Y. Gogotsi: Development of asymmetric supercapacitors with titanium carbide-reduced graphene oxide couples as electrodes. Electrochim. Acta 259, 752 (2018).

    CAS  Article  Google Scholar 

  9. 9.

    H. Sumi, T. Yamaguchi, H. Shimada, Y. Fujishiro, and M. Awano: Internal partial oxidation reforming of butane and steam reforming of ethanol for anode-supported microtubular solid oxide fuel cells. Fuel Cells 17, 875 (2017).

    CAS  Article  Google Scholar 

  10. 10.

    A. Kirubakaran, S. Jain, and R.K. Nema: A review on fuel cell technologies and power electronic interface. Renew. Sustain. Energy Rev. 13, 2430 (2009).

    CAS  Article  Google Scholar 

  11. 11.

    J. Lu, L. Li, J.B. Park, Y.K. Sun, F. Wu, and K. Amine: Aprotic and aqueous Li-O2 batteries. Chem. Rev. 114, 5611 (2014).

    CAS  Article  Google Scholar 

  12. 12.

    R. Black, B. Adams, and L.F. Nazar: Non-aqueous and hybrid Li-O2 batteries. Adv. Energy Mater. 2, 801 (2012).

    CAS  Article  Google Scholar 

  13. 13.

    Y.G. Li and H.J. Dai: Recent advances in zinc-air batteries. Chem. Soc. Rev. 43, 5257 (2014).

    CAS  Article  Google Scholar 

  14. 14.

    F.Y. Cheng and J. Chen: Metal-air batteries: from oxygen reduction electrochemistry to cathode catalysts. Chem. Soc. Rev. 41, 2172 (2012).

    CAS  Article  Google Scholar 

  15. 15.

    Z.L. Wang, D. Xu, J.J. Xu, and X.B. Zhang: Oxygen electrocatalysts in metal-air batteries: from aqueous to nonaqueous electrolytes. Chem. Soc. Rev. 43, 7746 (2014).

    CAS  Article  Google Scholar 

  16. 16.

    R. Cao, J.S. Lee, Ml. Liu, and J. Cho: Recent progress in non-precious catalysts for metal-air batteries. Adv. Energy Mater. 2, 816 (2012).

    CAS  Article  Google Scholar 

  17. 17.

    Y.G. Li and J. Lu: Metal air batteries: will they be the future electrochemical energy storage device of choice? ACS Energy Lett. 2, 1370 (2017).

    CAS  Article  Google Scholar 

  18. 18.

    X. Zhang, X. Wang, Z. Xie, and Z. Zhou: Recent progress in rechargeable alkali metal-air batteries. Green Energy Environ. 1, 4 (2016).

    Article  Google Scholar 

  19. 19.

    Z.W. Seh, J. Kibsgaard, C.F. Dickens, L.B. Chorkendorff, J.K. Norskov, and T.F. Jaramillo: Combining theory and experiment in electrocatalysis: insights into materials design. Science 355, 146 (2017).

    Article  Google Scholar 

  20. 20.

    A.C. Luntz and B.D. McCloskey: Nonaqueous Li-air batteries: a status report. Chem. Rev. 114, 11721 (2014).

    CAS  Article  Google Scholar 

  21. 21.

    X.H. Yao, Q. Dong, Q.M. Cheng, and D.W. Wang: Why do lithium-oxygen batteries fail: parasitic chemical reactions and their synergistic effect. Angew. Chem. Int. Ed. 55, 11344 (2016).

    CAS  Article  Google Scholar 

  22. 22.

    W. Yu, K.C. Lau, Y. Lei, R.L. Liu, L. Qin, W. Yang, B.H. Li, L.A. Curtiss, D. Y. Zhai, and F.Y. Kang: Dendrite-free potassium-oxygen battery based on a liquid alloy anode. ACS Appl. Mater. Interlaces 9, 31871 (2017).

    CAS  Article  Google Scholar 

  23. 23.

    H. Yadegari, Q. Sun, and X.L. Sun: Sodium-oxygen batteries: a comparative review from chemical and electrochemical fundamentals to future perspective. Adv. Mater. 28, 7065 (2016).

    CAS  Article  Google Scholar 

  24. 24.

    Q. Dong, X.H. Yao, J.R. Luo, X.Z. Zhang, H.J. Hwang, and D.W. Wang: Enabling rechargeable non-aqueous Mg-O2 battery operations with dual redox mediators. Chem. Commun. 52, 13753 (2016).

    CAS  Article  Google Scholar 

  25. 25.

    B.D. McCloskey, D.S. Bethune, R.M. Shelby, G. Girishkumar, and A. C. Luntz: Solvents’ critical role in nonaqueous lithium-oxygen battery electrochemistry. J. Phys. Chem. Lett. 2, 1161 (2011).

    CAS  Article  Google Scholar 

  26. 26.

    B.D. McCloskey and D. Addison: A viewpoint on heterogeneous electro-catalysis and redox mediation in nonaqueous Li-O2 batteries. ACS Catal. 7, 772 (2017).

    CAS  Article  Google Scholar 

  27. 27.

    M.M.O. Thotiyl, S.A. Freunberger, Z.Q. Peng, and P.G. Bruce: The carbon electrode in nonaqueous Li-O2 cells. J. Am. Chem. Soc. 135, 494 (2013).

    Article  CAS  Google Scholar 

  28. 28.

    Y.C. Lu, H.A. Gasteiger, and Y. Shao-Horn: Catalytic activity trends of oxygen reduction reaction for nonaqueous Li-air batteries. J. Am. Chem. Soc. 133, 19048 (2011).

    CAS  Article  Google Scholar 

  29. 29.

    Y.C. Lu, H.A. Gasteiger, M.C. Parent, V. Chiloyan, and Y. Shao-Horn: The influence of catalysts on discharge and charge voltages of rechargeable Li-oxygen batteries. Electrochem. Solid State Lett. 13, A69 (2010).

    CAS  Article  Google Scholar 

  30. 30.

    B.D. McCloskey, R. Scheffler, A. Speidel, D.S. Bethune, R.M. Shelby, and A.C. Luntz: On the efficacy of electrocatalysis in nonaqueous Li-O2 batteries. J. Am. Chem. Soc. 133, 18038 (2011).

    CAS  Article  Google Scholar 

  31. 31.

    F.S. Gittleson, W.H. Ryu, M. Schwab, X. Tong, and A.D. Taylor: Pt and Pd catalyzed oxidation of Li2O2 and DMSO during Li-O2 battery charging. Chem. Commun. 52, 6605 (2016).

    CAS  Article  Google Scholar 

  32. 32.

    S.C. Ma, Y. Wu, J.W. Wang, Y.L. Zhang, Y.T. Zhang, X.X. Yan, Y. Wei, P. Liu, J.P. Wang, K.L. Jiang, S.S. Fan, Y. Xu, and Z.Q. Peng: Reversibility of noble metal-catalyzed aprotic Li-O2 batteries. Nano Lett. 15, 8084 (2015).

    CAS  Article  Google Scholar 

  33. 33.

    J. Xie, X.H. Yao, Q.M. Cheng, LP. Madden, P. Dornath, C.C. Chang, W. Fan, and D.W. Wang: Three dimensionally ordered mesoporous carbon as a stable, high-performance Li-O2 battery cathode. Angew. Chem. Int. Ed. 54, 4299 (2015).

    CAS  Article  Google Scholar 

  34. 34.

    K.M. Liao, T. Zhang, Y.Q. Wang, F.J. Li, Z.L. Jian, H.J. Yu, and H. S. Zhou: Nanoporous Ru as a carbon- and binder-free cathode for Li-O2 batteries. ChemSusChem 8, 1429 (2015).

    CAS  Article  Google Scholar 

  35. 35.

    J. Xie, X.H. Yao, LP. Madden, D.E. Jiang, L.Y. Chou, C.K. Tsung, and D. W. Wang: Selective deposition of Ru nanoparticles on TiSi2 nanonet and its utilization for Li2O2 formation and decomposition. J. Am. Chem. Soc. 136, 8903 (2014).

    CAS  Article  Google Scholar 

  36. 36.

    J. Lu, Y.J. Lee, X.Y. Luo, K.C. Lau, M. Asadi, H.H. Wang, S. Brombosz, J. G. Wen, D.Y. Zhai, Z.H. Chen, D.J. Miller, Y.S. Jeong, J.B. Park, Z. Z. Fang, B. Kumar, A. Salehi-Khojin, Y.K. Sun, L.A. Curtiss, and K. Amine: A lithium-oxygen battery based on lithium superoxide. Nature 529, 377 (2016).

    CAS  Article  Google Scholar 

  37. 37.

    J.K. Papp, J.D. Forster, C.M. Burke, H.W. Kim, A.C. Luntz, R.M. Shelby, J.J. Urban, and B.D. McCloskey: Poly(vinylidene fluoride) (PVDF) binder degradation in Li-O2 batteries: a consideration forthe characterization of lithium superoxide. J. Phys. Chem. Lett. 8, 1169 (2017).

    CAS  Article  Google Scholar 

  38. 38.

    A. Debart, A.J. Paterson, J. Bao, and P.G. Bruce: α-MnO2 nanowires: a catalyst for the O2 electrode in rechargeable lithium batteries. Angew. Chem. Int. Ed. 47, 4521 (2008).

    CAS  Article  Google Scholar 

  39. 39.

    J. Lu, Y. Qin, P. Du, X.Y. Luo, T.P. Wu, Y. Ren, J.G. Wen, D.J. Miller, J. T. Miller, and K. Amine: Synthesis and characterization of uniformly dispersed Fe3O4/Fe nanocomposite on porous carbon: application for rechargeable Li-O2 batteries. RSC Adv. 3, 8276 (2013).

    CAS  Article  Google Scholar 

  40. 40.

    X.H. Yao, Q.M. Cheng, J. Xie, Q. Dong, and D.W. Wang: Functionalizing titanium disilicide nanonets with cobalt oxide and palladium for stable Li oxygen battery operations. ACS Appl. Mater. Interfaces!, 21948 (2015).

    Google Scholar 

  41. 41.

    Z.L. Jian, P. Liu, F.J. Li, P. He, X.W. Guo, M.W. Chen, and H.S. Zhou: Core-shell-structured CNT@RuO2 composite as a high-performance cathode catalyst for rechargeable Li-O2 batteries. Angew. Chem. Int. Ed. 53, 442 (2014).

    CAS  Article  Google Scholar 

  42. 42.

    F.J. Li, D.M. Tang, T. Zhang, K.M. Liao, P. He, D. Golberg, A. Yamada, and H.S. Zhou: Superior performance of a Li-O2 battery with metallic RuO2 hollow spheres as the carbon-free cathode. Adv. Energy. Mater. 5, 1150294 (2015).

    Google Scholar 

  43. 43.

    Z.H. Fu, X.J. Lin, T. Huang, and A.S. Yu: Nano-sized La0.8Sr0.2MnO3 as oxygen reduction catalyst in nonaqueous Li/O2 batteries. J. Solid State Electrochem. 16, 1447 (2012).

    CAS  Article  Google Scholar 

  44. 44.

    J. Xie, Q. Dong, I. Madden, X.H. Yao, Q.M. Cheng, P. Dornath, W. Fan, and D.W. Wang: Achieving low overpotential Li-O2 battery operations by Li2O2 decomposition through one-electron processes. Nano Lett. 15, 8371 (2015).

    CAS  Article  Google Scholar 

  45. 45.

    B.D. McCloskey, A. Valery, A.C. Luntz, S.R. Gowda, G.M. Wallraff, J. M. Garcia, T. Mori, and L.E. Krupp: Combining accurate O2 and Li2O2 assays to separate discharge and charge stability limitations in nonaqueous Li-O2 batteries. J. Phys. Chem. Lett. 4, 2989 (2013).

    CAS  Article  Google Scholar 

  46. 46.

    F.J. Li, R. Ohnishi, Y. Yamada, J. Kubota, K. Domen, A. Yamada, and H. S. Zhou: Carbon supported TiN nanoparticles: an efficient bifunctional catalyst for non-aqueous Li-O2 batteries. Chem. Commun. 49, 1175 (2013).

    CAS  Article  Google Scholar 

  47. 47.

    D. Kundu, R. Black, B. Adams, K. Harrison, K. Zavadil, and L.F. Nazar: Nanostructured metal carbides for aprotic Li-O2 batteries: new insights into interfacial reactions and cathode stability. J. Phys. Chem. Lett. 6, 2252 (2015).

    CAS  Article  Google Scholar 

  48. 48.

    K.M. Abraham and Z. Jiang: A polymer electrolyte-based rechargeable lithium/oxygen battery. J. Electrochem. Soc. 143, 1 (1996).

    CAS  Article  Google Scholar 

  49. 49.

    J.L. Shui, N.K. Karan, M. Balasubramanian, S.Y. Li, and D.J. Liu: Fe/N/C composite in Li-O2 battery: studies of catalytic structure and activity toward oxygen evolution reaction. J. Am. Chem. Soc. 134, 16654 (2012).

    CAS  Article  Google Scholar 

  50. 50.

    D.H. Guo, R. Shibuya, C. Akiba, S. Saji, T. Kondo, and J. Nakamura: Active sites of nitrogen-doped carbon materials for oxygen reduction reaction clarified using model catalysts. Science 351, 361 (2016).

    CAS  Article  Google Scholar 

  51. 51.

    X.C. Cao, J. Wu, C. Jin, J.H. Tian, P. Strasser, and R.Z. Yang: MnCo2O4 anchored on P-doped hierarchical porous carbon as an electrocatalyst for high-performance rechargeable Li-O2 batteries. ACS Catal. 5, 4890 (2015).

    CAS  Article  Google Scholar 

  52. 52.

    J.R. Luo, X.H. Yao, L. Yang, Y. Han, L. Chen, X.M. Geng, V. Vattipalli, Q. Dong, W. Fan, D.W. Wang, and H I. Zhu: Free-standing porous carbon electrodes derived from wood for high-performance Li-O2 battery applications. Nano Res. 10, 9 (2017).

    Google Scholar 

  53. 53.

    Y.H. Zhang, Y.B. Chen, K.G. Zhou, C.H. Liu, J. Zeng, H.I. Zhang, and Y. Peng: Improving gas sensing properties of graphene by introducing dopants and defects: a first-principles study. Nanotechnology 20, 185504 (2009).

    Article  CAS  Google Scholar 

  54. 54.

    B.D. McCloskey, A. Speidel, R. Scheffler, D.C. Miller, V. Viswanathan, J. S. Hummelshoj, J.K. Norskov, and A.C. Luntz: Twin problems of interfacial carbonate formation in nonaqueous Li-O2 batteries. J. Phys. Chem. Lett. 3, 997 (2012).

    CAS  Article  Google Scholar 

  55. 55.

    S. Kundu, Y.M. Wang, W. Xia, and M. Muhler: Thermal stability and reducibility of oxygen-containing functional groups on multiwalled carbon nanotube surfaces: a quantitative high-resolution XPS and TPD/TPR study. J. Phys. Chem. C 112, 16869 (2008).

    CAS  Article  Google Scholar 

  56. 56.

    J. Lu, Y. Lei, K.C. Lau, X.Y. Luo, P. Du, J.G. Wen, R.S. Assary, U. Das, D. J. Miller, J.W. Elam, H.M. Albishri, D. Abd El-Hady, Y.K. Sun, L. A. Curtiss, and K. Amine: A nanostructured cathode architecture for low charge overpotential in lithium-oxygen batteries. Nat. Commun. 4, 2383 (2013).

    Article  Google Scholar 

  57. 57.

    Y.H. Chen, S.A. Freunberger, Z.Q. Peng, O. Fontaine, and P.G. Bruce: Charging a Li-O2 battery using a redox mediator. Nat. Chem. 5, 489 (2013).

    Article  CAS  Google Scholar 

  58. 58.

    N.N. Feng, P. He, and H.S. Zhou: Enabling catalytic oxidation of Li2O2 at the liquid-solid interface: the evolution of an aprotic Li-O2 battery. ChemSusChem 8, 600 (2015).

    CAS  Article  Google Scholar 

  59. 59.

    X.W. Gao, Y.H. Chen, L. Johnson, and P.G. Bruce: Promoting solution phase discharge in Li-O2 batteries containing weakly solvating electrolyte solutions. Nat Mater. 15, 882 (2016).

    CAS  Article  Google Scholar 

  60. 60.

    B.J. Bergner, A. Schurmann, K. Peppier, A. Garsuch, and J. Janek: TEMPO: a mobile catalyst for rechargeable Li-O2 batteries. J. Am. Chem. Soc. 136, 15054 (2014).

    CAS  Article  Google Scholar 

  61. 61.

    T. Shiga, Y. Hase, Y. Yagi, N. Takahashi, and K. Takechi: Catalytic cycle employing a TEMPO-anion complex to obtain a secondary Mg-O2 battery. J. Phys. Chem. Lett. 5, 1648 (2014).

    CAS  Article  Google Scholar 

  62. 62.

    M.J. Lacey, J.T. Frith, and J.R. Owen: A redox shuttle to facilitate oxygen reduction in the lithium air battery. Electrochem. Commun. 26, 74 (2013).

    CAS  Article  Google Scholar 

  63. 63.

    S. Matsuda, S. Mori, K. Hashimoto, and S. Nakanishi: Transition metal complexes with macrocyclic ligands serve as efficient electrocatalysts for aprotic oxygen evolution on Li2O2. J. Phys. Chem. C 118, 28435 (2014).

    CAS  Article  Google Scholar 

  64. 64.

    D. Sun, Y. Shen, W. Zhang, L Yu, Z.Q. Yi, W. Yin, D. Wang, Y.H. Huang, J. Wang, D.L. Wang, and J.B. Goodenough: A solution-phase bifunctional catalyst for lithium-oxygen batteries. J. Am. Chem. Soc. 136, 8941 (2014).

    CAS  Article  Google Scholar 

  65. 65.

    H.D. Lim, H. Song, J. Kim, H. Gwon, Y. Bae, K.Y. Park, J. Hong, H. Kim, T. Kim, Y.H. Kim, X. Lepra, R. Ovalle-Robles, R.H. Baughman, and K. Kang: Superior rechargeability and efficiency of lithium-oxygen batteries: hierarchical air electrode architecture combined with a soluble catalyst. Angew. Chem. Int. Ed. 53, 3926 (2014).

    CAS  Article  Google Scholar 

  66. 66.

    C.M. Burke, R. Black, I.R. Kochetkov, V. Giordani, D. Addison, L.F. Nazar, and B.D. McCloskey: Implications of 4 e- oxygen reduction via iodide redox mediation in Li-O2 batteries. ACS Energy Lett. 1, 747 (2016).

    CAS  Article  Google Scholar 

  67. 67.

    M. Tulodziecki, G.M. Leverick, C.V. Amanchukwu, Y. Katayama, D. G. Kwabi, F. Barde, P.T. Hammond, and Y. Shao-Horn: The role of iodide in the formation of lithium hydroxide in lithium-oxygen batteries. Energy Environ. Sci. 10, 1828 (2017).

    CAS  Article  Google Scholar 

  68. 68.

    T. Liu, M. Leskes, W.J. Yu, A.J. Moore, L.N. Zhou, P.M. Bayley, G. Kim, and C.P. Grey: Cycling Li-O2 batteries via LiOH formation and decomposition. Science 350, 530 (2015).

    CAS  Article  Google Scholar 

  69. 69.

    D.S. Geng, N. Ding, T.S.A. Hor, S.W. Chien, Z.L. Liu, and Y. Zong: Investigation on the cyclability of lithium-oxygen cells in a confined potential window using cathodes with pre-filled discharge products. Chem. Asian J. 10, 2182 (2015).

    CAS  Article  Google Scholar 

  70. 70.

    W.J. Kwak, D. Hirshberg, D. Sharon, M. Afri, A.A. Frimer, H.G. Jung, D. Aurbach, and Y.K. Sun: U-O2 cells with LiBr as an electrolyte and a redox mediator. Energy Environ. Sci. 9, 2334 (2016).

    CAS  Article  Google Scholar 

  71. 71.

    Z.J. Liang and Y.C. Lu: Critical role of redox mediator in suppressing charging instabilities of lithium-oxygen batteries. J. Am. Chem. Soc. 138, 7574 (2016).

    CAS  Article  Google Scholar 

  72. 72.

    S.H. Lee, W.J. Kwak, and Y.K. Sun: A new perspective of the ruthenium ion: a bifunctional soluble catalyst for high efficiency Li-O2 batteries. J. Mater. Chem. A 5, 15512 (2017).

    CAS  Article  Google Scholar 

  73. 73.

    W.H. Ryu, F.S. Gittleson, J.M. Thomsen, J.Y. Li, M.J. Schwab, G. W. Brudvig, and A.D. Taylor: Heme biomolecule as redox mediator and oxygen shuttle for efficient charging of lithium-oxygen batteries. Nat. Commun. 7, 12925 (2016).

    CAS  Article  Google Scholar 

  74. 74.

    Z.Y. Guo, X.L. Dong, S.Y. Yuan, Y.G. Wang, and Y.Y. Xia: Humidity effect on electrochemical performance of Li-O2 batteries. J. Power Sources 264, 1 (2014).

    CAS  Article  Google Scholar 

  75. 75.

    J.M. Garcia, H.W. Horn, and J.E. Rice: Dominant decomposition pathways for ethereal solvents in Li-O2 batteries. J. Phys. Chem. Lett. 6, 1795 (2015).

    CAS  Article  Google Scholar 

  76. 76.

    N.B. Aetukuri, B.D. McCloskey, J.M. Garcia, L.E. Krupp, V. Viswanathan, and A.C. Luntz: Solvating additives drive solution-mediated electrochemistry and enhance toroid growth in non-aqueous Li-O2 batteries. Nat Chem. 7, 50 (2015).

    CAS  Article  Google Scholar 

  77. 77.

    Y. Qiao, S.C. Wu, J. Yi, Y. Sun, S.H. Guo, S.X. Yang, P. He, and H. S. Zhou: From O-2 to HO2: reducing by-products and overpotential in Li-O2 batteries by water addition. Angew. Chem. Int. Ed. 56, 4960 (2017).

    CAS  Article  Google Scholar 

  78. 78.

    Y.G. Zhu, Q. Liu, Y.C. Rong, H.M. Chen, J. Yang, C.K. Jia, L.J. Yu, A. Karton, Y. Ren, X.X. Xu, S. Adams, and Q. Wang: Proton enhanced dynamic battery chemistry for aprotic lithium-oxygen batteries. Nat. Commun. 8, 14308 (2017).

    CAS  Article  Google Scholar 

  79. 79.

    D.J. Lee, H. Lee, Y.J. Kim, J.K. Park, and H.T. Kim: Sustainable redox mediation for lithium-oxygen batteries by a composite protective layer on the lithium-metal anode. Adv. Mater. 28, 857 (2016).

    CAS  Article  Google Scholar 

  80. 80.

    J.Q. Zhang, B. Sun, X.Q. Xie, Y.F. Zhao, and G.X. Wang: A bifunctional organic redox catalyst for rechargeable lithium-oxygen batteries with enhanced performances. Adv. Sci. 3, 1500285 (2016).

    Article  CAS  Google Scholar 

  81. 81.

    J.Q. Zhang, B. Sun, Y.F. Zhao, K. Kretschmer, and G.X. Wang: Modified tetrathiafulvalene as an organic conductor for improving performances of Li-O2 batteries. Angew. Chem. Int. Ed. 56, 8505 (2017).

    CAS  Article  Google Scholar 

  82. 82.

    A.C. Kozen, C.F. Lin, A.J. Pearse, M.A. Schroeder, X.G. Han, L.B. Hu, S. B. Lee, G.W. Rubloff, and M. Noked: Next-generation lithium metal anode engineering via atomic layer deposition. ACS Nano 9, 5884 (2015).

    CAS  Article  Google Scholar 

  83. 83.

    T. Zhang, N. Imanishi, Y. Shimonishi, A. Hirano, Y. Takeda, O. Yamamoto, and N. Sammes: A novel high energy density rechargeable lithium/air battery. Chem. Commun. 46, 1661 (2010).

    CAS  Article  Google Scholar 

  84. 84.

    J.S. Guo, A. Hsu, D. Chu, and R.R. Chen: Improving oxygen reduction reaction activities on carbon-supported Ag nanoparticles in alkaline solutions. J. Phys. Chem. C 114, 4324 (2010).

    CAS  Article  Google Scholar 

  85. 85.

    S.J. Guo and S.H. Sun: FePt nanoparticles assembled on graphene as enhanced catalyst for oxygen reduction reaction. J. Am. Chem. Soc. 134, 2492 (2012).

    CAS  Article  Google Scholar 

  86. 86.

    Y.G. Wang and H.S. Zhou: A lithium-air battery with a potential to continuously reduce O2 from air for delivering energy. J. Power Sources 195, 358 (2010).

    CAS  Article  Google Scholar 

  87. 87.

    A.J. Esswein, M.J. McMurdo, P.N. Ross, AT. Bell, and T.D. Tilley: Size-dependent activity of Co3O4 nanoparticle anodes for alkaline water electrolysis. J. Phys. Chem. C 113, 15068 (2009).

    CAS  Article  Google Scholar 

  88. 88.

    L. Wang, X. Zhao, Y.H. Lu, M.W. Xu, D.W. Zhang, R.S. Ruoff, K. J. Stevenson, and J.B. Goodenough: CoMn2O4 spinel nanoparticles grown on graphene as bifunctional catalyst for lithium-air batteries. J. Electrochem. Soc. 158, A1379 (2011).

    CAS  Article  Google Scholar 

  89. 89.

    J. Suntivich, H.A. Gasteiger, N. Yabuuchi, H. Nakanishi, J. B. Goodenough, and Y. Shao-Horn: Design principles for oxygen-reduction activity on perovskite oxide catalysts for fuel cells and metal-air batteries. Nat Chem. 3, 546 (2011).

    CAS  Article  Google Scholar 

  90. 90.

    L.J. Yang, S.J. Jiang, Y. Zhao, L. Zhu, S. Chen, X.Z. Wang, Q. Wu, J. Ma, Y.W. Ma, and Z. Hu: Boron-doped carbon nanotubes as metal-free electrocatalysts for the oxygen reduction reaction. Angew. Chem. Int. Ed. 50, 7132 (2011).

    CAS  Article  Google Scholar 

  91. 91.

    L.J. Li, S.H. Chai, S. Dai, and A. Manthiram: Advanced hybrid Li-air batteries with high-performance mesoporous nanocatalysts. Energy Environ. Sci. 7, 2630 (2014).

    CAS  Article  Google Scholar 

  92. 92.

    H.D. Lim, H. Park, H. Kim, J. Kim, B. Lee, Y. Bae, H. Gwon, and K. Kang: A new perspective on Li-SO2 batteries for rechargeable systems. Angew. Chem. Int. Ed. 54, 9663 (2015).

    CAS  Article  Google Scholar 

  93. 93.

    S.X. Yang, Y. Qiao, P. He, Y.J. Liu, Z. Cheng, J.J. Zhu, and H.S. Zhou: A reversible lithium-CO2 battery with Ru nanoparticles as a cathode catalyst. Energy Environ. Sci. 10, 972 (2017).

    CAS  Article  Google Scholar 

  94. 94.

    J.L. Ma, D. Bao, M.M. Shi, J.M. Yan, and X.B. Zhang: Reversible nitrogen fixation based on a rechargeable lithium-nitrogen battery for energy storage. Chem 2, 525 (2017).

    CAS  Article  Google Scholar 

  95. 95.

    W.I. Al Sadat and L.A. Archer: The O2-assisted AI/CO2 electrochemical cell: a system for CO2 capture/conversion and electric power generation. Sci. Adv. 2, e1600968 (2016).

    Article  CAS  Google Scholar 

  96. 96.

    X.F. Hu, J.C. Sun, Z.F. Li, Q. Zhao, C.C. Chen, and J. Chen: Rechargeable room-temperature Na-CO2 batteries. Angew. Chem. Int. Ed. 55, 6482 (2016).

    CAS  Article  Google Scholar 

  97. 97.

    C. Li, Z.Y. Guo, B.C. Yang, Y. Liu, Y.G. Wang, and Y.Y. Xia: A rechargeable Li-CO2 battery with a gel polymer electrolyte. Angew. Chem. Int. Ed. 56, 9126 (2017).

    CAS  Article  Google Scholar 

  98. 98.

    Y.Y. Hou, J.Z. Wang, L.L. Liu, Y.Q. Liu, S.L. Chou, D.Q. Shi, H.K. Liu, Y. P. Wu, W.M. Zhang, and J. Chen: Mo2C/CNT: an efficient catalyst for rechargeable Li-CO2 batteries. Adv. Fund. Mater. 27, 1700564 (2017).

    Article  CAS  Google Scholar 

  99. 99.

    S.Y. Zhang, M.J. Nava, G.K. Chow, N. Lopez, G. Wu, D.R. Britt, D. G. Nocera, and C.C. Cummins: On the incompatibility of lithium-O2 battery technology with CO2. Chem. Sci. 8, 6117 (2017).

    CAS  Article  Google Scholar 

  100. 100.

    M. Noked, M.A. Schroeder, A.J. Pearse, G.W. Rubloff, and S.B. Lee: Protocols for evaluating and reporting Li-O2 cell performance. J. Phys. Chem. Lett. 7, 211 (2016).

    CAS  Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors acknowledge financial support from Boston College. The authors thank Dr. Xiahui Yao, Yanyan Zhao, Qingmei Cheng, Jingru Luo, and Xizi Zhang for helpful discussions.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Dunwei Wang.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Dong, Q., Wang, D. Catalysts in metal-air batteries. MRS Communications 8, 372–386 (2018). https://doi.org/10.1557/mrc.2018.59

Download citation