200 mm wafer-scale fabrication of polydimethylsiloxane fluidic devices for fluorescence imaging of single DNA molecules


We report fabrication of 200 mm silicon (Si)-wafer mold structure for polydimethylsiloxane (PDMS) microfluidic devices to demonstrate a real-time fluorescence imaging of single DNA molecules. Conventional photolithography with deep reactive ion etching process allows us to build a “mesa”-type Si mold with a nanoscallop sidewall geometry aiding PDMS residue-free process. By optimizing fluorescence microscopy with the fabricated PDMS chamber, we obtain a protocol to visualize the motions of single DNA molecules. This integrative PDMS-based single-molecule imaging system can, in principle, be used as a platform to study biochemical reactions occurring in proteins, nucleotides, and vesicles.

This is a preview of subscription content, access via your institution.

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.


  1. 1.

    T.W. Odom, J.C. Love, D.B. Wolfe, K.E. Paul, and G.M. Whitesides: improved pattern transfer in soft lithography using composite stamps. Langmuir 18, 5314–5320 (2002).

    CAS  Article  Google Scholar 

  2. 2.

    B.-H. Jo, L.M.V. Lerberghe, K.M. Motsegood, and D.J. Beebe: Three-dimensional micro-channel fabrication in polydimethylsiloxane (PDMS) elastomer. J. Micromech. Syst. 9, 76–81 (1999).

    Article  Google Scholar 

  3. 3.

    X. Chen, and L. Zhang: Review in manufacturing methods of nanochan-nels of bio-nanofluidic chips. Sens. Actuators B: Chem. 254, 648–659 (2018).

    CAS  Article  Google Scholar 

  4. 4.

    R. Dahiya, G. Gottardi, and N. Laidani: PDMS residues-free micro/macro-structures on flexible substrates. Microelectron. Eng. 136, 57–62 (2015).

    CAS  Article  Google Scholar 

  5. 5.

    D. Huh, K.L. Mills, X. Zhu, M.A. Burns, M.D. Thouless, and S. Takayama: Tuneable elastomeric nanochannels for nanofluidic manipulation. Nat. Mater. 6, 424–428 (2007).

    CAS  Article  Google Scholar 

  6. 6.

    A.H.J. Yang, S.D. Moore, B.S. Schmidt, M. Klug, M. Lipson, and E. Erickson: Optical manipulation of nanoparticles and biomolecules in sub-wavelength slot waveguides. Nature 457, 71–75 (2009).

    CAS  Article  Google Scholar 

  7. 7.

    K. Jo, D.M. Dhingra, T. Odijk, J.J. de Pablo, M.D. Graham, R. Runnheim, D. Forrest, and D.C. Schwartz: A single-molecule barcoding system using nanoslits for DNA analysis. Proc. Natl. Acad. Sci. USA 104, 2673–2678 (2007).

    CAS  Article  Google Scholar 

  8. 8.

    S. Pedron, H. Polishetty, A.M. Pritchard, B.P. Mahadik, J.N. Sarkaria, and B.A.C. Harley: Spatially graded hydrogels for preclinical testing of glioblastoma anticancer therapeutics. MRS Commun. 7, 442–449 (2017).

    CAS  Article  Google Scholar 

  9. 9.

    C.K. Kang, S.M. Lee, I.D. Jung, P.G. Jung, S.J. Hwang, and J.S. Ko: The fabrication of patternable silicon nanotips using deep reactive ion etching. J. Micromech. Microeng. 18, 075007 (2008).

    Article  Google Scholar 

  10. 10.

    K.-S. Chen, A.A. Ayon, X. Zhang, and S.M. Spearing: Effect of process parameters on the surface morphology and mechanical performance of silicon structures after deep reactive ion etching (DRIE). J. Microelectromech. Syst 11, 264–275 (2002).

    CAS  Article  Google Scholar 

  11. 11.

    P. Kim, L.D. Zarzar, X. He, A. Grinthal, and J. Aizenberg: Hydrogel-actuated integrated responsive systems (HAIRS): moving towards adaptive materials. Curr. Opin. Solid State Mater. Sci. 15, 236–245 (2011).

    CAS  Article  Google Scholar 

  12. 12.

    C. Wang, S.-W. Nam, J.M. Cotte, C.V. Jahnes, E.G. Colgan, R.L. Bruce, M. Brink, M.F. Lofaro, J.V. Patel, L.M. Gignac, E.A. Joseph, S.P. Rao, G. Stolovitzky, S. Polonsky, and Q. Lin: Wafer-scale integration of sacrificial nanofluidic chips for detecting and manipulating single DNA molecules. Nat Commun. 8, 14243 (2017).

    CAS  Article  Google Scholar 

  13. 13.

    S.L. Levy, J.T. Mannion, J. Cheng, C.H. Reccius, and H.G. Craighead: Entropic unfolding of DNA molecules in nanofluidic channels. Nano Lett. 8, 3839–3844 (2008).

    CAS  Article  Google Scholar 

  14. 14.

    B. Kundukad, J. Yan, and P.S. Doyle: Effect of YOYO-1 on the mechanical properties of DNA. Soft Mater. 10, 9721–9728 (2014).

    CAS  Article  Google Scholar 

  15. 15.

    D. Stein, M. Kruithof, and C. Dekker: Surface-charge-governed ion transport in nanofluidic channels. Phys. Rev. Lett. 93, 035901 (2004).

    Article  Google Scholar 

  16. 16.

    R.B. Schoch and P. Renaud: Ion transport through nanoslits dominated by the effective surface charge. Appl. Phys. Lett. 86, 253111 (2005).

    Article  Google Scholar 

  17. 17.

    S.-W. Nam, M.J. Rook, K.-B. Kim, and S.M. Rossnagel: Ionic field effect transistors with sub-10 nm multiple nanopores. Nano Lett. 9, 2044–2048 (2009).

    CAS  Article  Google Scholar 

  18. 18.

    S.-W. Nam, M.-H. Lee, S.-H. Lee, D.-J. Lee, S.M. Rossnagel, and K.-B. Kim: Sub-10 nm nanochannels by self-sealing and self-limiting atomic layer deposition. Nano Lett. 10, 3324–3329 (2010).

    CAS  Article  Google Scholar 

  19. 19.

    W. Schrott, Z. Slouka, P. Cervenka, J. Ston, M. Nebyla, M. Pribyl, and D. Snita: Study on surface properties of PDMS microfluidic chips treated with albumin. Biomicrofluidics 3, 044101 (2009).

    Article  Google Scholar 

  20. 20.

    I. Wong and C.-M. Ho: Surface molecular property modifications for poly (dimethylsiloxane) (PDMS) based microfluidic devices. Microfluid. Nanofluid. 7, 291–306 (2009).

    CAS  Article  Google Scholar 

  21. 21.

    H. Cao, J.O. Tegenfeldt, R.H. Austin, and S.Y. Chou: Gradient nanostruc-tures for interfacing microfluidics and nanofluidics. Appl. Phys. Lett. 81, 3058–3060 (2002).

    CAS  Article  Google Scholar 

  22. 22.

    E.T. Lam, A. Hastie, C. Lin, D. Ehrlich, S.K. Das, M.D. Austin, P. Deshpande, H. Cao, N. Nagarajan, M. Xiao, and P.-Y. Kwok: Genome mapping on nanochannel arrays for structural variation analysis and sequence assembly. Nat. Biotechnol. 30, 771–776 (2012).

    CAS  Article  Google Scholar 

  23. 23.

    J. Jeffet, A. Kobo, T. Su, A. Grunwald, O. Green, A.N. Nilsson, E. Eisenberg, T. Ambjornsson, F. Westerlund, E. Weinhold, D. Shabat, P.K. Purohit, and Y. Ebenstein: Super-resolution genome mapping in sil icon nanochannels. ACS Nano 10, 9823–9830 (2016).

    CAS  Article  Google Scholar 

  24. 24.

    O.B. Bakajin, T.A.J. Duke, C.F. Chou, S.S. Chan, R.H. Austin, and E.C. Cox: Electrohydrodynamic stretching of DNA in confined environments. Phys. Rev. Lett. 80, 2737–2740 (1998).

    CAS  Article  Google Scholar 

  25. 25.

    T.W. Houseal, C. Bustamante, R.F. Stump, and M.F. Maestre: Real-time imaging of single DNA molecules with fluorescence microscopy. Biophys. J. 56, 507–516 (1989).

    CAS  Article  Google Scholar 

  26. 26.

    E.Z. Macosko, A. Basu, R. Satija, J. Nemesh, K. Shekhar, M. Goldman, I. Tirosh, A.R. Bialas, N. Kamitaki, E.M. Martersteck, J.J. Trombetta, D. A. Weitz, J.R. Sanes, A.K. Shalek, A. Regev, and S.A. McCarroll: Highly parallel genome-wide expression profiling of individual cells using nano-liter droplets. Cell 161, 1202–1214 (2015).

    CAS  Article  Google Scholar 

  27. 27.

    V.R. Yelleswarapu, H.-H. Jeong, S. Yadavali, and D. Issadore: Ultra-high throughput detection (1 million droplets per second) of fluorescent droplets using a cell phone camera and time domain encoded optofluidics. Lab Chip 17, 1083–1094 (2017).

    CAS  Article  Google Scholar 

  28. 28.

    M. Frankowski, P. Simon, N. Bock, A. El-hasni, U. Schnakenberg, and J. Neukammer: Simultaneous optical and impedance analysis of single cells: a comparison of two microfluidic sensors with sheath flow focusing. Eng. Life Sci. 15, 286–296 (2015).

    CAS  Article  Google Scholar 

  29. 29.

    J.-S. Wi, J. Park, H. Kang, D. Jung, S.-W. Lee, and T.G. Lee: Stacked gold nanodisks for bimodal photoacoustic and optical coherence imaging. ACS Nano 11, 6225–6232 (2017).

    CAS  Article  Google Scholar 

  30. 30.

    U.F. Keyser, B.N. Koeleman, S.V. Dorp, D. Krapf, R.M.M. Smeets, S. G. Lemay, N.H. Dekker, and C. Dekker: Direct force measurements on DNA in a solid-state nanopore. Nat. Phys. 2, 473–477 (2006).

    CAS  Article  Google Scholar 

  31. 31.

    J. Bai, D. Wang, S. Nam, H. Peng, R. Bruce, L. Gignac, M. Brink, E. Kratschmer, S. Rossnagel, P. Waggoner, K. Reuter, C. Wang, Y. Astier, V. Balagurusamy, B. Luan, Y. Kwark, E. Joseph, M. Guillorn, S. Polonsky, A. Royyuru, S.P. Rao, and G. Stolovitzky: Fabrication of sub-20 nm nanopore array in membranes with embedded metal electrodes at wafer scales. Nanoscale 6, 8900–8906 (2014).

    CAS  Article  Google Scholar 

  32. 32.

    L. Schermelleh, R. Heintzmann, and H. Leonhardt: A guide to super-resolution fluorescence microscopy. J. Cell Biol. 190, 165–175 (2010).

    CAS  Article  Google Scholar 

  33. 33.

    J. Chen, Y. Xu, X. Lv, X. Lai, and S. Zeng: Super-resolution differential interference contrast microscopy by structured illumination. Opt. Express 21, 112–121 (2013).

    Article  Google Scholar 

  34. 34.

    G. Wang, W. Sun, Y. Luo, and N. Fang: Resolving rotational motions of nano-objects in engineered environments and live cells with gold nano-rods and differential interference contrast microscopy. J. Am. Chem. Soc. 132, 16417–16422 (2010).

    CAS  Article  Google Scholar 

Download references


This work was supported by KNU research fund 2016.

Author information



Corresponding author

Correspondence to Sung-Wook Nam.

Electronic supplementary material

Supplementary materials

Supplementary materials

The supplementary material for this article can be found at https://doi.org/10.1557/mrc.2018.58

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Nam, SW. 200 mm wafer-scale fabrication of polydimethylsiloxane fluidic devices for fluorescence imaging of single DNA molecules. MRS Communications 8, 420–427 (2018). https://doi.org/10.1557/mrc.2018.58

Download citation