Skip to main content
Log in

Improvement of color retention properties of Ag deposition-based electrochromic device by introducing anion exchange membrane

  • Research Letter
  • Published:
MRS Communications Aims and scope Submit manuscript

Abstract

Ag deposition-based multicolor electrochromic (EC) device we reported can switch various optical states among transparent, black, silver, cyan, magenta, and yellow by only using electrochemical deposition of Ag. However, the EC device had poor color retention property under open-circuit state because of dissolution of deposited Ag metal by Cu2+ ions, which is essential because it acts as redox material at counter electrode. Here, we introduced an anion exchange membrane to separate Cu2+ from the Ag deposit. The improved device achieved longer retention time of colored state. It is effective to maintain the coloring state without electric power for practical application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. P.M.S. Monk, R.J. Mortimer, and D.R. Rosseinsky: Electrochromism and Electrochromic Devices (Cambridge University Press, Cambridge, England, 2007).

    Book  Google Scholar 

  2. R.J. Mortimer: Organic electrochromic materials. Electrochim. Acta 44, 2971–2981 (1999).

    Article  CAS  Google Scholar 

  3. N. Kobayashi, S. Miura, M. Nishimura, and H. Urano: Organic electrochromism for a new color electronic paper. Sol. Energy Mater. Sol. Cells 92, 36–139 (2008).

    Article  Google Scholar 

  4. D.R. Rosseinsky and R.J. Mortimer: Electrochromic systems and the prospects for devices. Adv. Mater. 13, 783–793 (2001).

    Article  CAS  Google Scholar 

  5. H. Urano, S. Sunohara, H. Ohtomo, and N. Kobayashi: Electrochemical and spectroscopic characteristics of dimethyl terephthalate. J. Mater. Chem. 14, 2366–2368 (2004).

    Article  CAS  Google Scholar 

  6. A.A. Argun, P.H. Aubert, B.C. Thompson, I. Schwendeman, C.L. Gaupp, J. Hwang, N.J. Pinto, D.B. Tanner, A.G. MacDiarmid, and J. R. Reynolds: Multicolored electrochromism in polymers: structures and devices. Chem. Mater. 16, 4401–4412 (2004).

    Article  CAS  Google Scholar 

  7. K. Imaizumi, Y. Watanabe, K. Nakamura, T. Omatsu, and N. Kobayashi: Multicolored electrochromism in 4,40-biphenyl dicarboxylic acid diethyl ester. Phys. Chem. Chem. Phys. 13, 11838–11840 (2011).

    Article  CAS  Google Scholar 

  8. E. Unur, J.-H. Jung, R.J. and J.R. Reynolds: Dual-polymer electrochromic film characterization using bi potentiostatic control. Chem. Mater. 20, 2328–2334 (2008).

    Article  CAS  Google Scholar 

  9. Y. Naijoh, T. Yashiro, S. Hirano, Y. Okada, S. Kim, K. Tsuji, H. Takahashi, K. Fujimura, and H. Kondoh: Multi-layered electrochromic display. IDW 11, 375–378 (2011).

    Google Scholar 

  10. S. Yokogawa, S.P. Burgos, and H.A. Atwater: Plasmonic color filters for CMOS image sensor applications. Nano Lett. 12, 4349–4354 (2012).

    Article  CAS  Google Scholar 

  11. S.J. Tan, L. Zhang, D. Zhu, X.M. Goh, Y.M. Wang, K. Kumar, C-W. Qiu, and J.K. Yang: Plasmonic color palettes for photorealistic printing with aluminum nanostructures. Nano Lett. 14, 4023–4029 (2014).

    Article  CAS  Google Scholar 

  12. K. Kumar, H. Duan, R.S. Hegde, S.C.W. Koh, J.N. Wei, and J.K.W. Yang: Printing colour at the optical diffraction limit. Nat Nanotechnol. 7, 557–561 (2012).

    Article  CAS  Google Scholar 

  13. S. Araki, K. Nakamura, K. Kobayashi, A. Tsuboi, and N. Kobayashi: Electrochemical optical-modulation device with reversible transformation between transparent, mirror, and black. Adv. Mater. 14, 122–126 (2012).

    Google Scholar 

  14. A. Tsuboi, K. Nakamura, and N. Kobayashi: A localized surface plasmon resonance-based multicolor electrochromic device with electrochemically size-controlled silver nanoparticles. Adv. Mater. 25, 3197–3201 (2013).

    Article  CAS  Google Scholar 

  15. A. Tsuboi, K. Nakamura, and N. Kobayashi: Multicolor electrochromism showing three primary color states (cyan-magenta-yellow) based on size- and shape-controlled silver nanoparticles. Chem. Mater. 26, 6477–6485 (2014).

    Article  CAS  Google Scholar 

  16. R. Onodera, A. Tsuboi, K. Nakamura, and N. Kobayashi: Coloration mechanisms of Ag deposition-based multicolor electrochromic device investigated by morphology of Ag deposit and its optical properties. J. SID 24, 424–432 (2016).

    CAS  Google Scholar 

  17. G. Sandmann, H. Dietz, and W. Plieth: Preparation of silver nanoparticles on ITO surfaces by a double-pulse method. J. Electroanal. Chem. 491, 78–86 (2000).

    Article  CAS  Google Scholar 

  18. M. Ueda, H. Dietz, A. Anders, H. Kneppe, A. Meixner, and W. Plieth: Double-pulse technique as an electrochemical tool for controlling the preparation of metallic nanoparticles. J. Electrochim. Acta 48, 377–386 (2002).

    Article  CAS  Google Scholar 

  19. A. Safavi, N. Maleki, and E. Farjami: Electrodeposited silver nanoparticles on carbon ionic liquid electrode for electrocatalytic sensing of hydrogen peroxide. Electroanalysis 21, 1533–1538 (2009).

    Article  CAS  Google Scholar 

  20. K. Wang, H. Wu, Y. Meng, Y. Zhang, and Z. Wei: Integrated energy storage and electrochromic function in one flexible device: an energy storage smart window. Energy Environ. Sci. 5, 8384–8389 (2012).

    Article  CAS  Google Scholar 

  21. Y-Y. Song, Z-D. Gao, J-H. Wang, X-H. Xia, and R. Lynch: Multistage coloring electrochromic device based on TIO2 nanotube arrays modified with WO3 nanoparticles. Adv. Fund. Mater. 21, 1941–1946 (2011).

    Article  CAS  Google Scholar 

  22. Y. Tian, W. Zhang, S. Cong, Y. Zheng, F. Geng, and Z. Zhao: Unconventional aluminum ion intercalation/deintercalation for fast switching and highly stable electrochromism. Adv. Fund. Mater. 25, 5833–5839 (2015).

    Article  CAS  Google Scholar 

  23. C-P. Li, C. Engtrakul, R.C. Tenent, and C.A. Wolden: Scalable synthesis of improved nanocrystalline, mesoporous tungsten oxide films with exceptional electrochromic performance. Sol. Energy Mater. Sol. Cells 132, 6–14 (2015).

    Article  CAS  Google Scholar 

  24. G.A. Niklasson, and C.G. Granqvist: Electrochromics for smart windows: thin films of tungsten oxide and nickel oxide, and devices based on these. J. Mater. Chem. 17, 127–156 (2007).

    Article  CAS  Google Scholar 

  25. C.G. Granqvist: Electrochromics for smart windows: oxide-based thin films and devices. Thin Solid Films 564, 1–38 (2014).

    Article  CAS  Google Scholar 

  26. C.M. Lampert: Chromogenic smart materials. Mater. Today 7, 28–35 (2004).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Norihisa Kobayashi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kimura, S., Onodera, R., Nakamura, K. et al. Improvement of color retention properties of Ag deposition-based electrochromic device by introducing anion exchange membrane. MRS Communications 8, 498–503 (2018). https://doi.org/10.1557/mrc.2018.55

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrc.2018.55

Navigation