Biomimetic protein-harpooning surfaces

Abstract

Properly driving protein interactions with solid surfaces play a very important role in many natural processes, stimulating a great interest for the design of new biomaterials and medical devices. Despite the progress in this field, many further upgrades have to be achieved to better exploit the protein driving, in terms of control of amounts and conformation of the adsorbing proteins. In this paper, new biocompatible amino acid-calix[4]crown-5 bilayers were built as nano-templating surfaces, hosting a controlled number of anchoring sites, able to immobilize proteins in well-defined quantity, and the evaluated footprint data support the idea of oriented protein on analyzed substrates. The efficiency of the setup was tested for the particular case of antibacterial lysozyme adsorption on biocompatible surfaces.

This is a preview of subscription content, access via your institution.

Scheme 1
Figure 1
Table I
Figure 2
Table II
Figure 3

References

  1. 1.

    D.G. Castner and B. D. Ratner: Biomedical surface science: foundations to frontiers. Surf. Sci. 500, 28 (2002).

    CAS  Article  Google Scholar 

  2. 2.

    J. J. Gray: The interaction of proteins with solid surfaces. Curr. Opin. Struct. Biol. 14, 110 (2004).

    CAS  Article  Google Scholar 

  3. 3.

    N. Tuccitto, N. Giamblanco, A. Licciardello, and G. Marietta: Patterning of lactoferrin using functional SAMs of iron complexes. Chem. Commun. 25, 2621 (2007).

    Article  Google Scholar 

  4. 4.

    B. Kasemo: Biological surface science. Surf. Sci. 500, 656 (2002).

    CAS  Article  Google Scholar 

  5. 5.

    C. Satriano, G.M.L. Messina, S. Carnazza, S. Guglielmino, and G. Marietta: Bacterial adhesion onto nanopatterned polymer surfaces. Mat. Sci. Eng. C 26, 942 (2006).

    CAS  Article  Google Scholar 

  6. 6.

    M. Manso Silvan, G.M.L. Messina, I. Montero, C. Satriano, J.P. Garcia Ruiz, and G. Marietta: Aminofunctionalization and sub-micrometer patterning on silicon through silane doped agarose hydrogels. J. Mater. Chem. 19, 5226 (2009).

    CAS  Article  Google Scholar 

  7. 7.

    C. Fotia, G.M.L. Messina, G. Marietta, N. Baldini, and G. Ciapetti: Hyaluronan-based pericellular matrix: substrate electrostatic charges and early cell adhesion events. Eur. Cell Mater. 26, 133 (2013).

    CAS  Article  Google Scholar 

  8. 8.

    F. A. Denis, P. Hanarp, D. S. Sutherland, J. Gold, C. Mustin, P. G. Rouxhet, and Y. F. Dufrene: Protein adsorption on model surfaces with controlled nanotopography and chemistry. Langmuir 18, 819 (2002).

    CAS  Article  Google Scholar 

  9. 9.

    M. Dettin, A. Zamuner, M. Roso, A. Gloria, G. lucci, G.M.L. Messina, U. D’Amore, G. Marietta, M. Modesti, I. Castagniulo, and P. Brun: Electrospun scaffolds for osteoblast cells: peptide-induced concentration-dependent improvements of polycaprolactone. PLoS ONE 10(9), e0137505 (2005).

    Article  Google Scholar 

  10. 10.

    M.A. Donovan, Y. Y. Yimer, J. Pfaendtner, E.H.G. Backus, M. Bonn, and T. Weidner: Ultrafast reorientational dynamics of leucine at the air-water interface. J. Am. Chem. Soc. 138, 5226 (2016).

    CAS  Article  Google Scholar 

  11. 11.

    P. Roach, D. Farrar, and C.C. Perry: Interpretation of protein adsorption: surface-induced conformational changes. J. Am. Chem. Soc. 127, 8168 (2005).

    CAS  Article  Google Scholar 

  12. 12

    .C. F. Wertz and M.M. Santore: Adsorption and reorientation kinetics of lysozyme on hydrophobic surfaces. Langmuir 18, 1190 (2002).

    CAS  Article  Google Scholar 

  13. 13.

    P. Brun, M. Scorzeto, S. Vassanelli, I. Castagliuolo, G. Palu, F. Ghezzo, G. M.I. Messina, G. Iucci, V. Battaglia, S. Sivolella, A. Bagno, G. Polzonetti, G. Marietta, and M. Dettin: Mechanisms underlying the attachment and spreading of human osteoblasts: from transient interactions to focal adhesions on vitronectin-grafted bioactive surfaces. Acta. Biomater 9, 6105 (2013).

    CAS  Article  Google Scholar 

  14. 14.

    P. Neri, J. L. Sessler, and M.-X. Wang, eds. Calixarenes and Beyond (Springer International Publishing, Cham, 2016).

    Google Scholar 

  15. 15.

    J. Vicens, J. Harrowfield, and L. Baklouti, eds. Calixarenes in the Nanoworld (Springer, The Netherlands, 2007).

    Google Scholar 

  16. 16.

    C. Bonaccorso, G. Brancatelli, G. Forte, G. Arena, S. Geremia, D. Sciotto, and C. Sgarlata: Factors driving the self-assembly of water-soluble calix [4]arene and gemini guests: a combined solution, computational and solid-state study. RSC Adv. 4, 53575 (2014).

    CAS  Article  Google Scholar 

  17. 17.

    C. Escudero, A. D’Urso, R. Lauceri, C. Bonaccorso, D. Sciotto, S. Di Bella, Z. El-Hachemi, J. Crusats, J.M. Ribb, and R. Purrello: Hierarchical dependence of porphyrin self-aggregation: controlling and exploiting the complexity. J. Porphyr Phthalocyanines 14, 708 (2010).

    CAS  Article  Google Scholar 

  18. 18.

    T. Mecca, G. M. L. Messina, G. Marietta, and F. Cunsolo: Novel pH responsive calix[8]arene hydrogelators: self-organization processes at a nanometric scale. Chem. Commun. 49, 2530 (2002).

    Article  Google Scholar 

  19. 19.

    C. Bonaccorso, G. Brancatelli, F. P. Ballistreri, S. Geremia, A. Pappalardo, G. A. Tomaselli, R. M. Toscano, and D. Sciotto: Novel chiral (salen)Mn(III) complexes containing a calix[4]arene unit in 1,3-alternate conformation as catalysts for enantioselective epoxidation reactions of (Z)-aryl alkenes. Dalton Trans. 43, 2183 (2014).

    CAS  Article  Google Scholar 

  20. 20.

    A.T. Almeida, M.C. Salvadori, and D.F.S. Petri: Enolase adsorption onto hydrophobic and hydrophilic solid substrates. Langmuiri 18, 6914 (2002).

    CAS  Article  Google Scholar 

  21. 21.

    C. S. Park, H. J. Lee, A. C. Jamison, and T.R. Lee: Robust maleimide-functionalized gold surfaces and nanoparticles generated using custom-designed bidentate adsorbates. Langmuir 32, 7306 (2016).

    CAS  Article  Google Scholar 

  22. 22.

    M. I. Bethencourt, L. Srisombat, P. Chinwangso, and T. R. Lee: SAMs on gold derived from the direct adsorption of alkanethioacetates are inferior to those derived from the direct adsorption of alkanethiols. Langmuir 25, 1265 (2009).

    CAS  Article  Google Scholar 

  23. 23.

    A. Ulman: Formation and structure of self-assembled monolayers. Chem. Rev. 96, 1533 (1996).

    CAS  Article  Google Scholar 

  24. 24.

    A. Feiler, A. Sahlholm, T. Sandberg, and K. D. Caldwell: Adsorption and viscoelastic properties of fractionated mucin (BSM) and bovine serum albumin (BSA) studied with quartz crystal microbalance (QCM-D). J. Colloid Interface Scl. 315, 475 (2007).

    CAS  Article  Google Scholar 

  25. 25.

    G. Sauerbrey: Verwendung von Schwingquarzen zur Wagung diinner Schichten und zur Mikrowagung. Z Phys. 55, 206 (1959).

    Article  Google Scholar 

  26. 26.

    J.-Y. Park, B.-C. Kim, and S.-M. Park: Molecular recognition of protonated polyamines at calix[4]crown-5 self-assembled monolayer modified electrodes by impedance measurements. Anal. Chem. 79, 1890 (2007).

    CAS  Article  Google Scholar 

  27. 27.

    M. Rabe, D. Verdes, and S. Seeger: Understanding protein adsorption phenomena at solid surfaces. Adv. Colloid Interface 87, 162 (2011).

    Google Scholar 

  28. 28.

    Z.G. Peng, K. Hidajat, and M.S. Uddin: Selective and sequential adsorption of bovine serum albumin and lysozyme from a binary mixture on nanosized magnetic particles. J. Colloid Interface Sci. 11, 281 (2005).

    Google Scholar 

  29. 29.

    F. Dismer and J. Hubbuch: A novel approach to characterize the binding orientation of lysozyme on ion-exchange resins. J. Chromatogr. A 312, 1149 (2007).

    Google Scholar 

  30. 30.

    K. Kubiak, Z. Adamczyk, and M. Ocweieja: Kinetics of silver nanoparticle deposition at PAH monolayers: reference QCM results. Langmuir 31, 2988 (2015).

    CAS  Article  Google Scholar 

Download references

Acknowledgments

G. M. L. Messina acknowledges the financial support by FIRB 2013—Future in Research (MIUR, Rome). C. Bonaccorso acknowledges the University of Catania for a post-doctoral Fellowship. G. Marletta acknowledges the partial financial support from FIR 2014 (University of Catania).

Author information

Affiliations

Authors

Corresponding authors

Correspondence to G. M. L. Messina or C. Bonaccorso.

Electronic supplementary material

Supplementary material

Supplementary material

The supplementary material for this article can be found at https://doi.org/10.1557/mrc.2018.54

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Messina, G.M.L., Bonaccorso, C., Rapisarda, A. et al. Biomimetic protein-harpooning surfaces. MRS Communications 8, 241–247 (2018). https://doi.org/10.1557/mrc.2018.54

Download citation