A highly efficient and antifouling microfluidic platform for portable hemodialysis devices


End-stage renal disease (ESRD) is a life-threatening illness that presents significant healthcare challenges. About 90% of ESRD patients receive hemodialysis treatment, but the currently available hemodialysis systems are bulky and prone to complications. We report the design of a microfluidic hemodialysis device composed of two polydimethylsiloxane (PDMS) chambers separated by a cellulose ester (CE) membrane. The polyethylene glycol-passivated PDMS and CE surfaces reduced platelet adhesion by 74% and 86%, respectively. Moreover, the device exhibited a higher urea clearance rate per unit area than a healthy kidney. The reported design sets the foundation for a next-generation biomimetic portable hemodialysis device.

This is a preview of subscription content, access via your institution.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5


  1. 1.

    C. Clase: Renal failure (chronic). Clin. Evid 2011, 1–26 (2011).

    Google Scholar 

  2. 2.

    R. Thomas, A. Kanso, and J. R. Sedor: Chronic kidney disease and its complications. Prim. Care, 35, 329–344 (2008) vii. https://doi.org/10.1016/j.pop.2008.01.008.

    Article  Google Scholar 

  3. 3.

    2017 USRDS annual data report: Epidemiology of kidney disease in the United States. (Bethesda, MD, 2017). https://doi.org/10.1053/j.ajkd.2017.01.020.

    Google Scholar 

  4. 4.

    K.C. Eames, P. Holder, and E. Zambrano: Solving the kidney shortage via the creation of kidney donation co-operatives. J. Health Econ. 54, 91–97 (2017). https://doi.org/10.1016/jjhealeco.2017.04.001.

    CAS  Article  Google Scholar 

  5. 5.

    F. Javed, A. V. Savkin, G. S. H. Chan, J. D. MacKie, and N. H. Lovell: Recent advances in the monitoring and control of haemodynamic variables during haemodialysis: a review. Physiol. Meas. 33, R1–R31 (2012). https://doi.org/10.1088/0967-3334/33/1/R1.

    Article  Google Scholar 

  6. 6.

    H.D. Polaschegg: Hemodialysis machine technology: a global overview. Expert. Rev. Med. Devices!, 793–810 (2010). https://doi.org/10.1586/erd.10.54.

    Google Scholar 

  7. 7.

    A.A. Bernardo, T.C. Marbury, P.A. McFarlane, R.P. Pauly, M. Amdahl, J. Demers, A.M. Hutchcraft, J.K. Leypoldt, M. Minkus, M. Muller, R. Stallard, and B.F. Culleton: Clinical safety and performance of VIVIA: a novel home hemodialysis system. NDT 32, 685–692 (2017). https:// doi.org/10.1093/ndt/gfw044.

    CAS  Google Scholar 

  8. 8.

    M. Kraemer: Physiological monitoring and control in hemodialysis: State of the art and outlook. Expert Rev. Med. Device 3, 617–634 (2006). https://doi.org/10.1586/17434440.3.5.617.

    Article  Google Scholar 

  9. 9.

    R.A. Wolfe, V.B. Ashby, E.L. Milford, A.O. Ojo, R.E. Ettenger, L.Y. C. Agodoa, P.J. Held, and F.K. Port: Comparison of mortality in all patients on dialysis, patients on dialysis awaiting transplantation, and recipients of a first cadaveric transplant. N. Engl. J. Med. 341, 1725–1730 (1999).

    CAS  Article  Google Scholar 

  10. 10.

    M.A. Kraus, S. Kansal, M. Copland, P. Komenda, E.D. Weinhandl, G. L Bakris, C.T. Chan, R.J. Fluck, and J.M. Burkart: Intensive hemodialysis and potential risks with increasing treatment. Am. J. Kidney Dis. 68, S51–S58 (2016). https://doi.org/10.1053/j.ajkd.2016.05.020.

    Article  Google Scholar 

  11. 11.

    D. Tharmaraj and P.G. Kerr: Haemolysis in haemodialysis. Nephrology, 11 838–847 (2017). https://doi.org/10.1111/nep.13119.

    Article  Google Scholar 

  12. 12.

    V. Sunkara and Y.K. Cho: Investigation on the mechanism of aminosilane-mediated bonding of thermoplastics and poly(dimethylsiloxane). ACS Appl. Mater. Interfaces 4, 6537–6544 (2012). https://doi.org/10.1021/am3015923.

    CAS  Article  Google Scholar 

  13. 13.

    D. Maji, S.K. Lahiri, and S. Das: Study of hydrophilicity and stability of chemically modified PDMS surface using piranha and KOH solution. Surf. Interface Anal. 44, 62–69 (2012). https://doi.org/10.1002/sia.3770.

    CAS  Article  Google Scholar 

  14. 14.

    J.A. Howarter and J.P. Youngblood: Optimization of silica silanization by 3-aminopropyltriethoxysilane. Langmuir 22, 11142–11147 (2006). https://doi.org/10.1021/la061240g.

    CAS  Article  Google Scholar 

  15. 15.

    G. T. Hermanson: Bioconjugate Techniques (Academic Press, San Diego, California, 1996).

  16. 16.

    C.H. Jo, Y.H. Roh, J.E. Kim, S. Shin, and K.S. Yoon: Optimizing platelet-rich plasma gel formation by varying time and gravitational forces during centrifugation. J. Oral Implantol. 39, 525–532 (2013). https://doi.org/10.1563/AAID-JOI-D-10-00155.

    Article  Google Scholar 

  17. 17.

    M. Heger, I.I. Salles, W. Van Vuure, H. Deckmyn, and J.F. Beek: Fluorescent labeling of platelets with polyanionic fluorescein derivatives. Anal. Quant. Cytol. Histol. 31, 227–232 (2009).

    Google Scholar 

  18. 18.

    N.U. Amin, R.T. Mahmood, M.J. Asad, M. Zafar, and A.M. Raja: Evaluating urea and creatinine levels in chronic renal failure pre and post dialysis: a prospective study. J. Cardiovasc. Dis. 2, 2330–4596 (2014).

    Google Scholar 

  19. 19.

    R.N. Foley, P.S. Parfrey, J.D. Harnett, G.M. Kent, C.J. Martin, D.C. Murray, and P.E. Barre: Clinical and echocardiographic disease in patients starting end-stage renal disease therapy. Kidney Int. 47, 186–192 (1995). https://doi.org/10.1038/ki.1995.22.

    CAS  Article  Google Scholar 

  20. 20.

    L.B. Leverett, J.D. Heliums, C.P. Alfrey, and E.C. Lynch: Red blood cell damage by shear stress. Biophys. J. 12, 257–273 (1972). https://doi.org/10.1016/S0006-3495(72)86085-5.

    CAS  Article  Google Scholar 

  21. 21.

    I. Banerjee, R.C. Pangule, and R.S. Kane: Antifouling coatings: recent developments in the design of surfaces that prevent fouling by proteins, bacteria, and marine organisms. Adv. Mater. 23, 690–718 (2011). https://doi.org/10.1002/adma.201001215.

    CAS  Article  Google Scholar 

  22. 22.

    C. Blaszykowski, S. Sheikh, and M. Thompson: Biocompatibilityand antifouling: is there really a link? Trends Biotechnol. 32, 61–62 (2014). https://doi.org/10.1016/j.tibtech.2013.11.002.

    CAS  Article  Google Scholar 

  23. 23.

    P. Harder, M. Grunze, R. Dahint, G.M. Whitesides, and P.E. Laibinis: Molecular conformation in oligo(ethylene glycol)-terminated self-assembled monolayers on gold and silver surfaces determines their ability to resist protein adsorption. J. Phys. Chem. B 102, 426–436 (1998). https://doi.org/10.1021/jp972635z.

    CAS  Article  Google Scholar 

  24. 24.

    R. A. McPherson, and M. R. Pincus: Henry’s Clinical Diagnosis and Management by Laboratory Methods E-Book, 23rd ed. (Elsevier, St. Louis, Missouri, 2017).

    Google Scholar 

  25. 25.

    A. Bohle, B. Aeikens, A. Eenboom, L. Fronholt, W.R. Plate, J.C. Xiao, A. Greschniok, and M. Wehrmann: Human glomerular structure under normal conditions and in isolated glomerular disease. Kidney Int. Suppl. 67, S186–S188 (1998). https://doi.org/10.1046/j.1523-1755.1998.06742.x.

    CAS  Article  Google Scholar 

  26. 26.

    A. Alayoud, A. Bahadi, T. Aatif, M. Benyahia, D. Montassir, A. Hamzi, Y. Zajjari, De. Kabbaj, O. Maoujoud, K. Hassani, and Z. Oualim: The Kt/V by ionic dialysance: Interpretation limits. Indian. J. Nephrol. 22, 333 (2012). https://doi.org/10.4103/0971-4065.103906.

    CAS  Article  Google Scholar 

  27. 27.

    D. C. Eaton, and J. P. Pooler: Renal blood flow and glomerular filtration. In Vander’s Renal Physiology 8e (McGraw-Hill Education, NewYork, NY, 2017).

Download references

Author information



Corresponding author

Correspondence to Xiaowu (Shirley) Tang.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ausri, I.R., Feygin, E.M., Cheng, C.Q. et al. A highly efficient and antifouling microfluidic platform for portable hemodialysis devices. MRS Communications 8, 474–479 (2018). https://doi.org/10.1557/mrc.2018.43

Download citation