Ab initio formation energies and time-dependent density functional theory excitation energies for nickel-nitrogen defect sites in diamond nanoparticles


Diamond stands out in its ability to host hundreds of color centers, the most studied of which may be the nitrogen-vacancy and NE8 centers. The NE8 center, in particular, can generate single photons at an energy of 1.56 eV, but synthesis efforts are low yield and lack precise control of the defect structure and resulting optical properties. Complementing a bottom-up synthesis effort, we develop a rapid-screening computational approach for screening potential color centers in nanodiamond, focusing here on the nickel-nitrogen complexes. Formation and optical absorption energies are characterized with respect to defect stoichiometry and structure.

This is a preview of subscription content, access via your institution.

Figure 1
Figure 2
Table I
Table II
Figure 3
Table III


  1. 1.

    I. Aharonovich, D. Englund, and M. Toth: Solid-state single-photon emitters. Nat. Photonics MI, 631 (2016).

    Google Scholar 

  2. 2.

    M.W. Doherty, N.B. Manson, P. Delaney, F. Jelezko, J. Wrachtrup, and L.C.L. Hollenberg: The nitrogen-vacancy colour centre in diamond. Phys. Rep. 528, 1 (2013).

    CAS  Article  Google Scholar 

  3. 3.

    G. Davies: Dynamic Jahn-Teller distortions at trigonal optical centres in diamond. J. Phys. C: Solid State Phys. 12, 2551 (1979).

    CAS  Article  Google Scholar 

  4. 4.

    G. Davies, and M.F. Hamer: Optical studies of the 1.945 eVvibronic band in diamond. P. R. Soc. Lond. A. Mat. 348, 285 (1976).

    CAS  Article  Google Scholar 

  5. 5.

    J. Orwa, A.D. Greentree, I. Aharonovich, A.D.C. Alves, J. Van Donkelaar, A. Stacey, and S. Prawer: Fabrication of single optical centres in diamond-a review. J. Lumin. 130, 1646 (2010).

    CAS  Article  Google Scholar 

  6. 6.

    V.A. Nadolinny, A.P. Yelisseyev, J.M. Baker, M.E. Newton, D.J. Twitchen, S.C. Lawson, O.P. Yuryeva, and B.N. Feigelson: A study of 13C hyperfine structure in the EPR of nickel-nitrogen-containing centres in diamond and correlation with their optical properties. J. Phys. Condens Matter 11, 7357 (1999).

    CAS  Article  Google Scholar 

  7. 7.

    T. Gaebel, I. Popa, A. Gruber, M. Domhan, F. Jelezko, and J. Wrachtrup: Stable single-photon source in the near infrared. New J. Phys. 6, 98 (2004).

    Article  Google Scholar 

  8. 8.

    I. Aharonovich, S. Castello, D.A. Simpson, C.H. Su, A.D. Greentree, and S. Prawer: Diamond-based single-photon emitters. Rep. Prog. Phys. 74, 076504 (2011).

    Article  Google Scholar 

  9. 9.

    J.R. Rabeau, Y.L. Chin, S. Prawer, F. Jelezko, and T. Gaebel: Fabrication of single nickel-nitrogen defects in diamond by chemical vapor deposition. Appl. Phys. Lett. 96, 131926 (2005).

    Article  Google Scholar 

  10. 10.

    E. Wu, J.R. Rabeau, G. Roger, F. Treussart, H. Zeng, P. Grangier, S. Prawer, and J-F. Roch: Room temperature triggered single-photon source in the near infrared. New J. Phys. 9, 434 (2007).

    Article  Google Scholar 

  11. 11.

    I. Aharonovich, C. Zhou, J.O. Orwa, S. Castelletto, D. Simpson, A. D. Greentree, F. Treussart, J-F. Roch, and S. Prawer: Enhanced single-photon emission in the near infrared from a diamond color center. Phys.Rev. B 79, 235316 (2009).

    Article  Google Scholar 

  12. 12.

    A.S. Zyubin, A.M. Mebel, H.C. Change, and S.H. Lin: Potential energy surfaces for the lowest excited states of the nitrogen-vacancy point defects in diamonds: a quantum chemical study. Chem. Phys. Lett. 462, 251 (2008).

    CAS  Article  Google Scholar 

  13. 13.

    N.W. Gothard, D.S. Dudis, and L.J. Bissell: Modeling of transition metal color centers in diamond. MRS Adv. 1, 1113 (2016).

    CAS  Article  Google Scholar 

  14. 14.

    J.Y. Raty, and G. Galli: Optical properties and structure of nanodiamonds. J. Electroanal. Chem. 584, 12 (2005).

    Article  Google Scholar 

  15. 15.

    M.W. Schmidt, K.K. Baldridge, J.A. Boatz, S.T. Elbert, M.S. Gordon, J.H. Jensen, S. Koseki, N. Matsunaga, K.A. Nguyen, S. Su, T.L. Windus, M. Dupuis, and J.A. Montgomery: General atomic and molecular electronic structure system. J. Comput. Chem. 14, 1347 (1993).

    CAS  Article  Google Scholar 

  16. 16.

    J.P. Perdew, K. Burke, and M. Ernzerhof: Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996).

    CAS  Article  Google Scholar 

  17. 17.

    P.J. Stephens, F.J. Devlin, C.F. Chabalowski, and M.J. Frisch: Ab initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields. J. Phys. Chem. 98, 11623 (1994).

    CAS  Article  Google Scholar 

  18. 18.

    C. Adamo, and V. Barone: Toward reliable density functional methods without adjustable parameters: the PBE0 model. J. Chem. Phys. 110, 6158 (1999).

    CAS  Article  Google Scholar 

  19. 19.

    X. Xu, Q. Zhang, R.P. Muller, and W.A. Goddard: An extended hybrid density functional (X3LYP) with improved descriptions of nonbond interactions and thermodynamic properties of molecular systems. J. Chem. Phys. 122, 014105 (2004).

    Article  Google Scholar 

  20. 20.

    A.J. Neves, R. Pereira, N.A. Sobolev, M.H. Nazare, W. Gehlhoff, A. Naser, and H. Kanda: New paramagnetic centers in annealed high-pressure synthetic diamond. Diam. Relat. Mater. 9, 1057 (2000).

    CAS  Article  Google Scholar 

  21. 21.

    G. Thiering, E. Londero, and A. Gali: Single nickel-related defects in molecular-sized nanodiamonds for multicolor bioimaging: an ab initio study. Nanoscale 6, 12018 (2014).

    CAS  Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Nicholas W. Gothard.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gothard, N.W., Dudis, D.S. & Bissell, L.J. Ab initio formation energies and time-dependent density functional theory excitation energies for nickel-nitrogen defect sites in diamond nanoparticles. MRS Communications 8, 453–458 (2018). https://doi.org/10.1557/mrc.2018.39

Download citation