Developing fire-retardant and water-repellent bio-structural panels using nanocellulose


The fire-retardant and water-repellent bio-structural panels (BISPs) were successfully developed using cellulose nanofibrils, corn starch, boric acid, and n-dodecenyl succinic anhydride with adhesive-free character. Its performance properties were evaluated and compared with other well-known products on the market. The BISP’s density (0.1 g/cm3)and permeance value [41.81 g/day/m2with 5.76% coefficient of variation (CV)] were found higher than compared competitor products. The BISPs’ contact angle was found 132.13° (1.59% CV)for BISP. The BISP was the only fire-retardant product, and the only one developed almost no smoke 2.20%.

This is a preview of subscription content, access via your institution.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Figure 1
Table I
Table II
Table III
Table IV
Table V
Figure 2
Table VI
Figure 3
Table VII
Figure 4
Table VIII
Table IX


  1. 1.

    K. Oksman, A.P. Mathew, and M. Sain: Novel biocomposites: processing, properties and potential applications. Plast. Rubber Compos. 38, 396–405 (2009).

    CAS  Article  Google Scholar 

  2. 2.

    M.A. Hubbe, O.J. Rojas, L.A. Lucia, and M. Sain: Cellulosic nanocompo-sites: a review. BioResources 3, 929 (2008).

    Article  Google Scholar 

  3. 3.

    T.H. Wegnerand P.E. Jones: Advancing cellulose-based nanotechnology. Cellulose 13, 115–118 (2006).

    Article  Google Scholar 

  4. 4.

    K. Oksman and M. Sain: Cellulose nanocomposites: processing, characterization, and properties. ACS Symp. Ser. 938, 2–8 (2006).

    Article  Google Scholar 

  5. 5.

    M.A.S.A. Samir, F. Alloin, and A. Dufresne: Review of recent research into cellulosic whiskers, their properties and their application in nanocompo-site field. Biomacromolecules 6, 612–626 (2005).

    CAS  Article  Google Scholar 

  6. 6.

    N. Yildirim and S. Shaler: A study on thermal and nanomechanical performance of cellulose nanomaterials (CNs). Materials 10, 718–730 (2017).

    Article  Google Scholar 

  7. 7.

    A. Dufresne: Nanocellulose: a new ageless bionanomaterial. Mater. Today 16, 220–227 (2013).

    CAS  Article  Google Scholar 

  8. 8.

    Y. Aitomaki and K. Oksman: Reinforcing efficiency of nanocellulose in polymers. React. Fund. Polym. 85, 151–156 (2014).

    Article  Google Scholar 

  9. 9.

    K.Y. Lee, Y. Aitomaki, L.A. Berglund, K. Oksman, and A. Bismarck: On the use of nanocellulose as reinforcement in polymer matrix composites. Compos. Sci. Technol. 105, 15–27 (2014).

    Article  Google Scholar 

  10. 10.

    B.E. Dale and J. Chem: ’Greening’ the chemical industry: research and development priorities for biobased industrial products. Technol. Blotechnol. 78, 1093–1103 (2003).

    CAS  Google Scholar 

  11. 11.

    N. Lavoine, I. Desloges, A. Dufresne, and J. Bras: Microfibrillated cellulose - its barrier properties and applications in cellulosic materials: A review. Carbohydr. Polym. 90, 735 (2012).

    CAS  Article  Google Scholar 

  12. 12.

    I.S. Bayer, D. Fragouli, A. Attanasio, B. Sorce, G. Bertoni, R. Brescia, R. D. Corato, T. Pellegrino, M. Kalyva, S. Sabella, P.P. Pompa, R. Cingolani, and A. Athanassiou: Water-repellent cellulose fiber networks with multifunctional properties. ACS Appl. Mater. Interfaces 3, 4024–4031 (2011).

    CAS  Article  Google Scholar 

  13. 13.

    Y. Yin, J. Li, Y. Liu, and Z. Li: Starch crosslinked with poly (vinyl alcohol) by boric acid. Appl. Polym. Scl. 96, 1394–1397 (2005).

    CAS  Article  Google Scholar 

  14. 14.

    S. Gaan and G.J. Sun: Effect of phosphorus and nitrogen on flame retar-dant cellulose: A study of phosphorus compounds. J. Anal. Appl. Pyrolysls 78, 371–377 (2007).

    CAS  Article  Google Scholar 

  15. 15.

    P. Rupper, S. Gaan, V. Salimova, and M. Heuberger: Characterization of chars obtained from cellulose treated with phosphoramidate flame retar-dants. J. Anal. Appl. Pyrolysis 87, 93–98 (2010).

    CAS  Article  Google Scholar 

  16. 16.

    V. Salimova, N. Dimitry, and S. Gaan: Effect of chemical environment of organophosphorus compounds on thermal decomposition of cellulose. PMSE Prepr 98, 250–251 (2008).

    CAS  Google Scholar 

  17. 17.

    A.R. Horrocks: Fire retardant challenges for textiles and fibres: new chemistry versus innovatory solutions. Polym. Degrad. Stab. 96, 377–392 (2011).

    CAS  Article  Google Scholar 

  18. 18.

    J. Alongi and G. Malucelli: Cotton flame retardancy: state of the art and future perspectives. RSC Adv. 5, 24239–24263 (2015).

    CAS  Article  Google Scholar 

  19. 19.

    Z.A. Nagieb, M.A. Nassar, and M.G. El: Effect of addition of boric acid and borax on fire-retardant and mechanical properties of urea formaldehyde saw dust composites. Int. J. Carbohydr. Chem. 2011, 1–6 (2011).

    Article  Google Scholar 

  20. 20.

    Z. Song, H. Xiao, and Y. Zhao: Hydrophobic-modified nano-cellulose fiber/PLA biodegradable composites for lowering water vapor transmission rate (WVTR) of paper. Carbohydr. Polym. 111, 442–448 (2014).

    CAS  Article  Google Scholar 

  21. 21.

    D. Topgaard and O. Soderman: Diffusion of water absorbed in cellulose fibers studied with H-NMR. Langmuir 17, 2694–2702 (2001).

    CAS  Article  Google Scholar 

  22. 22.

    K. Hofstetter, B. Hinterstoisser, and L. Salmen: Moisture uptake in native cellulose -the roles of different hydrogen bonds: a dynamic FT-IR study using deuterium exchange. Cellulose 13, 131–145 (2006).

    CAS  Article  Google Scholar 

  23. 23.

    A. Salminen: Hydrophobic micrfibrous cellulose and method of producing the same. Patent WO 2012089929A1 (2012).

    Google Scholar 

  24. 24.

    N. Yildirim, S.M. Shaler, D.J. Gardner, R. Rice, and D.W. Bousfield: Cellulose nanofibrils (CNFs) reinforced starch insulating foams. Cellulose 21, 4337–4347 (2014).

    CAS  Article  Google Scholar 

  25. 25.

    M. Balaxi, I. Nikolakakis, and S. Malamataris: Preparation of porous microcrystalline cellulose pellets by freeze-drying: effect of wetting liquid and initial freezing conditions. J. Pharm. Sci. 99 2104–2113 (2010).

    CAS  Article  Google Scholar 

  26. 26.

    Z. Liu, Y. Li, F. Cui, L. Ping, J. Song, Y. Ravee, L. Jin, Y. Xue, J. Xu, G. Li, Y. Wang, and Y. Zheng: Production of octenyl succinic anhydride-modified waxy corn starch and its characterization. J. Agric. Food Chem. 56, 11499–11506 (2008).

    CAS  Article  Google Scholar 

  27. 27.

    K.C. Chen and Y.F. Lin: Immobilization of microorgansizms with phos-phorylated polyvinyl alcohol (PVA) gel. Enzyme Microb. Technol. 16, 79–83 (1994).

    CAS  Article  Google Scholar 

  28. 28.

    M.V. Duin, J.A. Peter, A.P.G. Kieboom, and H. Van Bekkum: Studies on borate esters I. Tetrahedron 40, 2901–2911 (1994).

    Article  Google Scholar 

  29. 29.

    B. Wicklein, A. Kocjan, G. Salazar-Alvarez, F. Carosio, G. Camino, M. Antonietti, and L. Bergström: Thermally insulating and fire-retardant lightweight anisotropic foams based on nanocellulose and graphene oxide. Nat. Nanotechnol. 10, 277–283 (2014).

    Article  Google Scholar 

  30. 30.

    N. Sombatsompop and K. Chaochanchaikul: Effect of moisture content on mechanical properties, thermal and structural stability and extrudate texture of poly (vinyl chloride)/wood saw dust composites. Polym. Int. 53, 1210–1218 (2004).

    CAS  Article  Google Scholar 

  31. 31.

    F. Yin, C. Tang, X. Li, and X. Wang: Effect of moisture on mechanical properties and thermal stability of meta-aramid fiber used in insulating paper. Polymers 9, 537–551 (2017).

    Article  Google Scholar 

  32. 32.

    C. Aulin, G. Salazar-Alvarez, and T. Lindstrom: High strength, flexible and transparent nanofibrillated cellulose-nanoclay biohybrid films with tunable oxygen and water vapor permeability. Nanoscale 4, 6622–6628 (2012).

    CAS  Article  Google Scholar 

  33. 33.

    S.S. Ray and M. Okamoto: Polymer/layered silicate nanocomposites: a review from preparation to processing. Prog. Polym. Sci. 28, 1539–1641 (2003).

    CAS  Article  Google Scholar 

  34. 34.

    K.Y. Yano, A. Usuki, A. Okada, T. Kurauchi, and O. Kamigaito: Synthesis and properties of polyimide-clay hybrid. J. Polym. Sci. 31, 2493–2498 (1993).

    CAS  Article  Google Scholar 

  35. 35.

    N.T. Cervin, C. Aulin, P.T. Larsson, and L. Wagberg: Ultra porous nanocellulose aerogels as separation medium for mixtures of oil/water liquids. Cellulose 19, 401–410 (2012).

    CAS  Article  Google Scholar 

  36. 36.

    H. Jin, M. Kettunen, A. Laiho, H. Pynnonen, J. Paltakari, A. Marmur, O. Ikkala, and R.H.A. Ras: Superhydrophobic and superoleophobic nanocellulose aerogel membranes as bioinspired cargo carriers on water and oil. Langmuim, 1930–1934 (2011).

    Google Scholar 

  37. 37.

    A.A. Stec and T.R. Hull. Assessment of the fire toxicity of building insulation materials. Energy Build. 43, 498–506 (2011).

    Article  Google Scholar 

Download references


The authors thank Revolution Research Inc. for supplying nanocellulose in this study and thank Will West for contributing to the manufacturing process. This work was partly supported by the National Science Foundation (NSF) under the Small Business Technology Transfer (STTR) Phase I Program (Eco-friendly Thermal Insulation Composite Foam Boards—Award #1521326).

Author information



Corresponding author

Correspondence to Nadir Yildirim.

Conflicts of interest

Conflicts of interest

The author declares no conflict of interest. The founding sponsors had no role in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, and in the decision to publish the results.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yildirim, N. Developing fire-retardant and water-repellent bio-structural panels using nanocellulose. MRS Communications 8, 257–265 (2018).

Download citation