Bio-inspired synthesis of superparamagnetic iron oxide nanoparticles for enhanced in vitro anticancer therapy


Superparamagnetic iron oxide nanoparticles (SPIONPs) are successfully synthesized in this study by co-precipitation method using actinobacterial metabolites as reducing agent. Physicochemical and morphological features of the nanoparticles (NPs) are analyzed by Fourier-transform infrared spectroscopy, x-ray-based techniques, vibrating sample magnetometer, thermal gravimetric analysis, and electron microscopic analysis, with an average size of 15-30 nm. Anticancer activity of the magnetite-NPs is systematically evaluated on HeLa cells using MTT assay, Hoechst nuclear staining, acridine orange/ethidium bromide dual staining and flow cytometric analysis. The obtained results open a new route for biosynthesis of SPIONPs, which to be used for various biomedical applications, particularly in cancer therapy.

This is a preview of subscription content, access via your institution.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5


  1. 1.

    A. K. Gupta and M. Gupta: Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials 26, 3995–4021 (2005).

    CAS  Article  Google Scholar 

  2. 2.

    C. Xu and S. Sun: New forms of superparamagnetic nanoparticles for biomedical applications. Adv. Drug Deliv. Rev. 65, 732–743 (2013).

    CAS  Article  Google Scholar 

  3. 3.

    C. Hou, L. Zhou, H. Zhu, X. Wang, N. Hu, F. Zeng, L. Wang, and H. Yin: Mussel-inspired surface modification of magnetic@graphite nanosheets composite for efficient Candida rugosa lipase immobilization. J. Ind. Microbiol. Biotechnol. 42, 723–734 (2015).

    CAS  Article  Google Scholar 

  4. 4.

    W. Wu, Q. He, and C. Jiang: Magnetic iron oxide nanoparticles: synthesis and surface functionalization strategies. Nanoscale Res. Lett. 3, 397–415 (2008).

    CAS  Article  Google Scholar 

  5. 5.

    P. C. Nagajyothi, M. Pandurangan, D. H. Kim, T. V. M. Sreekanth, and J. Shim: Green synthesis of iron oxide nanoparticles and their catalytic and in vitro anticancer activities. J. Cluster Sci. 28, 245–257 (2017).

    CAS  Article  Google Scholar 

  6. 6.

    S. Qu, H. Yang, D. Ren, S. Kan, G. Zou, D. Li, and M. Li: Magnetite nanoparticles prepared by precipitation from partially reduced ferric chloride aqueous solutions. J. Colloid Interface Sci. 215, 190–192 (1999).

    CAS  Article  Google Scholar 

  7. 7.

    T. Mosmann: Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J. Immunol. Methods 65, 55–63 (1983).

    CAS  Article  Google Scholar 

  8. 8.

    L.C. Crowley, B.J. Marfell, and N. J. Waterhouse: Analyzing cell death by nuclear staining with Hoechst 33342. Cold Spring Harb. Protoc. (2016) doi:10.1101/pdb.prot087205.

    Google Scholar 

  9. 9.

    K. L. Ho, L. S. Yazan, N. Ismail, and M. Ismail: Apoptosis and cell cycle arrest of human colorectal cancer cell line HT-29 induced by vanillin. Cancer Epidemiol. 33, 155–160 (2009).

    CAS  Article  Google Scholar 

  10. 10.

    S. N. Qi, A. Yoshida, Z. R. Wang, and T. Ueda: GP7 can induce apoptotic DNA fragmentation of human leukemia cells through caspase-3-dependent and -independent pathways. Int. J. Mol. Med. 13, 163–167 (2004).

    CAS  Google Scholar 

  11. 11.

    V. V. Makarov, S. S. Makarova, A. J. Love, O. V. Sinitsyna, A. O. Dudnik, I. V. Yaminsky, M. E. Taliansky, and N. O. Kalinina: Biosynthesis of stable iron oxide nanoparticles in aqueous extracts of Hordeum vulgare and Rumex acetosa plants. Langmuir 30, 5982–5988 (2014).

    CAS  Article  Google Scholar 

  12. 12.

    Y. T. Prabhu, K. Venkateswara Rao, B. Siva Kumari, V. S. S. Kumar, and T. Pavani: Synthesis of Fe3O4 nanoparticles and its antibacterial application. Int. Nano Lett. 5, 85–92 (2015).

    CAS  Article  Google Scholar 

  13. 13.

    Y.L. Su, J. H. Fang, C. Y. Liao, C. T. Lin, Y. T. Li, and S. H. Hu: Targeted mesoporous iron oxide nanoparticles-encapsulated perfluorohexane and a hydrophobic drug for deep tumor penetration and therapy. Theranostics 5, 1233–1248 (2015).

    CAS  Article  Google Scholar 

  14. 14.

    O. Rahman, S. C. Mohapatra, and S. Ahmad: Fe3O4 inverse spinal super paramagnetic nanoparticles. Mater. Chem. Phys. 132, 196–202 (2012).

    CAS  Article  Google Scholar 

  15. 15.

    M. Mahdavi, M. B. Ahmad, M. J. Haron, F. Namvar, B. Nadi, M. Z. Rahman, and J. Amin: Synthesis, surface modification and characterisation of biocompatible magnetic iron oxide nanoparticles for biomedical applications. Molecules 18, 7533–7548 (2013).

    CAS  Article  Google Scholar 

  16. 16.

    B. Zhivotosky, and S. Orrenius: Assessment of apoptosis and necrosis by DNA fragmentation and morphological criteria. In Current Protocols in Cell Biology, edited by J.S. Bonifacino, M. Dasso, J. B. Harford, J. L. Schwartz and K. M. Yamada (John Wiley & Sons, Inc., New York, 2001), pp. 1–23.

    Google Scholar 

  17. 17.

    Y. Errami, A.S. Naura, H. Kim, J. Ju, Y. Suzuki, A.H. El-Bahrawy, M.A. Ghonim, R.A. Hemeida, M.S. Mansy, and J. Zhang: Apoptotic DNA fragmentation may be a cooperative activity between caspase-activated deoxyribonuclease and the poly (ADP-ribose) polymerase-regulated DNAS1L3, an endoplasmic reticulum-localized endonuclease that translocates to the nucleus during apoptosis. J. Biol. Chem. 288, 3460–3468 (2013).

    CAS  Article  Google Scholar 

Download references


One ofthe authors, T. Shanmugasundaram wishes to thankthe SERB, India for financial support in the form of National Post-Doctoral Fellowship (PDF/2016/003119).

Author information



Corresponding author

Correspondence to Ramasamy Balagurunathan.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Shanmugasundaram, T., Radhakrishnan, M., Poongodi, A. et al. Bio-inspired synthesis of superparamagnetic iron oxide nanoparticles for enhanced in vitro anticancer therapy. MRS Communications 8, 604–609 (2018).

Download citation