Q-carbon harder than diamond

Abstract

A new phase of carbon named Q-carbon is found to be over 40% harder than diamond. This phase is formed by nanosecond laser melting of amorphous carbon and rapid quenching from the super-undercooled state. Closely packed atoms in molten metallic carbon are quenched into Q-carbon with 80-85% sp3 and the rest sp2. The number density of atoms in Q-carbon can vary from 40% to 60% higher than diamond cubic lattice, as the tetrahedra packing efficiency increases from 70% to 80%. Using this semiempirical approach, the corresponding increase in Q-carbon hardness is estimated to vary from 48% to 70% compared to diamond.

This is a preview of subscription content, access via your institution.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Table I

References

  1. 1.

    R.S. Ruoff and A.L. Ruoff: Is C60 stifferthan diamond? Nature. 350, 663 (1991).

    Article  Google Scholar 

  2. 2.

    V. Blank, M. Popov, S. Buga, V. Davydov, V.N. Denisov, A.N. Ivlev, B.N. Marvin, V. Agafonov, R. Ceolin, H. Szwarc, and A. Rassat: Is C60 full -erite harder than diamond? Phys. Lett. A 188, 281 (1994).

    CAS  Article  Google Scholar 

  3. 3.

    A.Y. Liu, M.I. Cohen, and S.H. Tolbert: Prediction of new low compressibility solids. Science 245, 841 (1989).

    CAS  Article  Google Scholar 

  4. 4.

    C. Niu, Y.Z. Lu, and C.M. Lieber: Experimental realization of the covalent solid carbon nitride. Science 261, 334 (1993).

    CAS  Article  Google Scholar 

  5. 5.

    R.B. Kaner, J.J. Gilman, and S.H. Tolbert: Materials science. Designing superhard materials. Science 308, 1268 (2005).

    CAS  Article  Google Scholar 

  6. 6.

    A.Y. Liu and M.I. Cohen: Structural properties and electronic structure of low-compressibility materials: ß-Si3N4 and hypothetical ß-C3N4. Phys. Rev. B. 41, 10727 (1990).

    CAS  Article  Google Scholar 

  7. 7.

    J. Narayan and A. Bhaumik: Novel phase of carbon, ferromagnetism, and conversion into diamond. J. Appl. Phys. 118, 215303 (2015).

    Article  Google Scholar 

  8. 8.

    J. Narayan and A. Bhaumik: Research update: direct conversion of h-BN into pure c-BN at ambient temperatures and pressures in air. APL Mater. 4, 20701 (2016).

    Article  Google Scholar 

  9. 9.

    J. Narayan and A. Bhaumik: Q-carbon discovery and formation of single-crystal diamond nano- and microneedles and thin films. Mater. Res. Lett. 4, 118 (2016).

    CAS  Article  Google Scholar 

  10. 10.

    J. Narayan, A. Bhaumik, and W. Xu: Direct conversion of h-BN into c-BN and formation of epitaxial c-BN/diamond heterostructures. J. Appl. Phys. 119, 185302 (2016).

    Article  Google Scholar 

  11. 11.

    A. Jaoshvili, A. Esakia, M. Porrati, and P.M. Chaikin: Experiments on the random packing of tetrahedral dice. Phys. Rev. Lett. 104, 185501 (2010).

    Article  Google Scholar 

  12. 12.

    A. Haji-Akbari, M. Engel, A.S. Keys, X. Zheng, R.G. Petschek, P.P. Muhoray, and S.C. Glotzer: Disordered, quasicrystalline and crystalline phases of densely packed tetrahedra. Nature 462, 773 (2009).

    CAS  Article  Google Scholar 

  13. 13.

    Y. Gao, S. Kim, S. Zhou, H.C. Chiu, D. Nelias, C. Berger, W. Heer, L. Polloni, R. Sordan, A. Bongiorno, and E. Riedo: Elastic coupling between layers in two-dimensional materials. Nat. Mater. 14, 714 (2015).

    CAS  Article  Google Scholar 

  14. 14.

    Y. Gao, T. Cao, F. Cellini, C. Berger, W.A. Heer, E. Tosatti, E. Riedo, and A. Bongiorno: Ultrahard carbon film from epitaxial two-layer graphene. Nat. Nanotechnol., 13, 133 (2018).

    CAS  Article  Google Scholar 

  15. 15.

    A. Bhaumik, R. Sachan, and J. Narayan: High-temperature superconductivity in boron-doped Q-carbon. ACS Nano 11, 5351 (2017).

    CAS  Article  Google Scholar 

  16. 16.

    A. Bhaumik, R. Sachan, and J. Narayan: A novel high-temperature carbon-based superconductor: B-doped Q-carbon. J. Appl. Phys. 122, 45301 (2017).

    Article  Google Scholar 

  17. 17.

    A. Bhaumik, R. Sachan, S. Gupta, and J. Narayan: Discovery of high-temperature superconductivity (TC = 55K) in B-doped Q-carbon. ACS Nano 11, 11915 (2017).

    CAS  Article  Google Scholar 

  18. 18.

    J.R. Willis: Hertzian contact of anisotropic bodies. J. Mech. Phys. Solids. 14, 163 (1966).

    Article  Google Scholar 

  19. 19.

    J. Narayan, A. Bhaumik, and R. Sachan: High temperature superconductivity in distinct phases of amorphous B-doped Q-carbon. J. Appl. Phys. (2018).

    Google Scholar 

  20. 20.

    J. Bruley, D.B. Williams, J.J. Cuomo, and D.P. Pappas: Quantitative near-edge structure analysis of diamond-like carbon in the electron microscope using a two-window method. J. Microsc. 180, 22 (1995).

    CAS  Article  Google Scholar 

  21. 21.

    S. Prawer and R.J. Nemanich: Raman spectroscopy of diamond and doped diamond. Philos. Trans. A. Math. Phys. Eng. Sci. 362, 2537–2565 (2004).

    CAS  Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

We are grateful to Fan Family Foundation Distinguished Chair Endowment for J. Narayan. R. Sachan acknowledges the National Academy of Sciences (NAS), USA for awarding the NRC research fellowship. This work was performed under the National Science Foundation (Award number DMR-1735695). We used Analytical Instrumentation Facility (AIF) at North Carolina State University, which is supported by the State of North Carolina. Filippo Cellini and Elisa Riedo acknowledge the support from the Office of Basic Energy Sciences of the US Department of Energy (grant no. DE-SC0016204).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jagdish Narayan.

Appendices

Supplementary materials

The supplementary material for this article can be found at https://doi.org/10.1557/mrc.2018.35.

Author contributions

J. N. conceived and designed the theory and wrote the manuscript with inputs from all the co-authors. S. G. and A. B. synthesized the samples and performed the Raman spec-troscopy, SEM, and HR-TEM imaging. R. S. performed electron microscopic imaging and EEL spectroscopy. F. C. and E. R. performed the performed AFM imaging and nanome-chanics experiments.

Competing financial interests statement

The authors declare no competing financial interests.

Conflict of interest

The authors declare no competing financial interest.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Narayan, J., Gupta, S., Sachan, R. et al. Q-carbon harder than diamond. MRS Communications 8, 428–436 (2018). https://doi.org/10.1557/mrc.2018.35

Download citation