Structural, electrical, and antimicrobial characterization of green synthesized ZnO nanorods from aqueous Mentha extract

Abstract

We synthesized two types of ZnO nanoparticles (NPs) for comparison, the first NPs were produced using a Zn(Ac)2.2H2O solution in distilled water and the second were produced using a Zn(Ac)2.2H2O solution in an aqueous extract of Mentha (mint). The x-ray diffraction patterns were indexed on the basis of a hexagonal (wurtzite) structure. The samples illustrate the high crystalline quality, and the average crystal sizes of the NPs were calculated to be 50 and 60 nm for GS and NS, respectively. ZnO nanorods were produced for the first time by using green synthesis method.

This is a preview of subscription content, access via your institution.

Figure 1
Table I
Figure 2
Figure 3
Figure 4
Figure 5
Table II
Figure 6
Figure 7
Figure 8

References

  1. 1.

    A. Pimentel, E. Fortunato, A. Gonçalves, A. Marques, H. Águas, L. Pereira, I. Ferreira, and R. Martins: Polycrystalline intrinsic zinc oxide to be used in transparent electronic devices. Thin Solid Films 487, 212–215 (2005).

    CAS  Article  Google Scholar 

  2. 2.

    S.J. Pearson, D.P. Norton, K. Ip, Y.W. Heo, and T. Steiner: Recent progress in processing and properties of ZnO. Prog. Mater. Sci. 50, 293–340 (2005).

    Article  Google Scholar 

  3. 3.

    H.R. An, H.J. Ahn, and J.W. Park: High-quality, conductive, and transparent Ga-doped ZnO films grown by atmospheric-pressure chemical-vapor deposition. Ceram. Int. 41, 2253–2259 (2015).

    CAS  Article  Google Scholar 

  4. 4.

    Z.E. Vakulov, E.G. Zamburg, D.A. Khakhulin, and O.A. Ageev: Thermal stability of ZnO thin films fabricated by pulsed laser deposition. Mater. Sci. Semicond. Process. 66, 21–25 (2017).

    CAS  Article  Google Scholar 

  5. 5.

    F. Ynineb, N. Attaf, M.S. Aida, J. Bougdira, Y. Bouznit, and H. Rinnert: Morphological and optoelectrical study of ZnO:In/p-Si heterojunction prepared by ultrasonic spray pyrolysis. Thin Solid Films 628, 36–42 (2017).

    CAS  Article  Google Scholar 

  6. 6.

    L.C.K. Liau and J.S. Huang: Energy-level variations of Cu-doped ZnO fabricated through sol-gel processing. J. Alloys Compd. 702, 153–160 (2017).

    CAS  Article  Google Scholar 

  7. 7.

    M. Toporkov, M.B. Ullah, D.O. Demchenko, V. Avrutin, H. Morkoç, and Ü. Özgür: Effect of oxygen-to-metal flux ratio on incorporation of metal species into quaternary BeMgZnO grown by plasma-assisted molecular beam epitaxy. J. Cryst. Growth 467, 145–149 (2017).

    CAS  Article  Google Scholar 

  8. 8.

    D. Suresh, P.C. Nethravathi, Udayabhanu, M.A. Pavan Kumar, H. Raja Naika, H. Nagabhushana, and S.C. Sharma: Chironji mediated facile green synthesis of ZnO nanoparticles and their photoluminescence, photodegradative, antimicrobial and antioxidant activities. Mater. Sci. Semicond. Process. 40, 759–765 (2015).

    CAS  Article  Google Scholar 

  9. 9.

    T.X. Wang, S.H. Xu, and F.X. Yang: Green synthesis of CuO nanoflakes from CuCO3·Cu(OH)2 powder and H2O2 aqueous solution. Powder Technol. 228, 128–130 (2012).

    CAS  Article  Google Scholar 

  10. 10.

    H. Çolak, and E. Karaköse: Green synthesis and characterization of nanostructured ZnO thin films using Citrus aurantifolia (lemon) peel extract by spin-coating method. J. Alloys Compd. 690, 658–662 (2017).

    Article  Google Scholar 

  11. 11.

    H. Çolak, E. Karaköse, and F. Duman: High optoelectronic and antimicrobial performances of green synthesized ZnO nanoparticles using Aesculus hippocastanum. Environ. Chem. Lett. 15, 1–6 (2017).

    Article  Google Scholar 

  12. 12.

    H. Çolak and E. Karaköse: Structural, electrical and optical properties of green synthesized ZnO nanoparticles using aqueous extract of thyme (Thymus vulgaris). J. Mater. Sci. - Mater. Electron 28, 12184–12190 (2017).

    Article  Google Scholar 

  13. 13.

    E. Karaköse, H. Çolak, and F. Duman: Green synthesis and antimicrobial activity of ZnO nanostructures Punica granatum shell extract. Green Process. Synth. 6, 317–323 (2017).

    Google Scholar 

  14. 14.

    R. Singh, M.A.M. Shushni, and A. Belkheir: Antibacterial and antioxidant activity of Mentha piperita. Arab. J. Chem. 4, 1–20 (2011).

    Article  Google Scholar 

  15. 15.

    M.L. Tsai, C.T. Wu, T.F. Lin, W.C. Lin, Y.C. Huang, and C.H. Yang: Chemical composition and biological properties of essential oils of two mint species. Trop. J. Pharm. Res. 12, 577–582 (2013).

    Google Scholar 

  16. 16.

    Z. Sroka, I. Fecka, and W. Cisowski: Antiradical and anti-H2O2 properties of polyphenolic compounds from an aqueous peppermint extract. Z. Naturforsch. 60C, 826–832 (2005).

    Article  Google Scholar 

  17. 17.

    H. Çolak and O. Türkoglu: Co-doped ZnO: synthesis and structural, electrical and optical properties. J. Mater. Sci. - Mater. Electron 26, 10141–10150 (2015).

    Article  Google Scholar 

  18. 18.

    B. Kumar, K. Smita, L. Cumbal, and A. Debut: Green approach for fabrication and applications of zinc oxide nanoparticles. Bioinorg. Chem. Appl. 2014, 1–7 (2014).

    Google Scholar 

  19. 19.

    S. Vijayakumar, B. Vaseeharan, B. Malaikozhundan, and M. Shobiya: Laurus nobilis leaf extract mediated green synthesis of ZnO nanoparticles: characterization and biomedical applications. Biomed. Pharmacother. 84, 1213–1222 (2016).

    CAS  Article  Google Scholar 

  20. 20.

    H.A. Salam, R. Sivaraj, and R. Venckatesh: Green synthesis and characterization of zinc oxide nanoparticles from Ocimum basilicum L. var. purpurascens Benth.-Lamiaceae leaf extract. Mater. Lett. 131, 16–18 (2014).

    Article  Google Scholar 

  21. 21.

    Y. Gao and R. Cranston: Recent advances in antimicrobial treatments of textiles. Text. Res. J. 78, 60–72 (2008).

    CAS  Article  Google Scholar 

  22. 22.

    E. Selvarajan and V. Mohanasrinivasan: Biosynthesis and characterization of ZnO nanoparticles using Lactobacillus plantarum VITES07. Mater. Lett. 112, 180–182 (2013).

    CAS  Article  Google Scholar 

  23. 23.

    C. Jayaseelan, A. Abdul Rahuman, A. Vishnu Kirthi, S. Marimuthu, T. Santhoshkumar, A. Bagavan, K. Gaurav, L. Karthik, and K.V. Bhaskara Rao: Novel microbial route to synthesize ZnO nanoparticles using Aeromonas hydrophila and their activity against pathogenic bacteria and fungi. Spectrochim. Acta A 90, 78–84 (2012).

    CAS  Article  Google Scholar 

  24. 24.

    M.M. Hassan, W. Khan, A. Azam, and A.H. Naqvi: Influence of Cr incorporation on structural, dielectric and optical properties of ZnO nanoparticles. J. Ind. Eng.Chem. 21, 283–291 (2015).

    Article  Google Scholar 

  25. 25.

    R.S. Ajimsha, A.K. Das, B.N. Singh, P. Misra, and L.M. Kukreja: Correlation between electrical and optical properties of Cr:ZnO thin films grown by pulsed laser deposition. Physics B 406, 4578–4583 (2011).

    CAS  Article  Google Scholar 

  26. 26.

    S. Yilmaz, O. Turkoglu, and I. Belenli: Measurement and properties of the ionic conductivity of b-phase in the binary system of (Bi2O3)1-X(Sm2O3)X. Mater. Chem. Phys. 112, 472–477 (2008).

    CAS  Article  Google Scholar 

  27. 27.

    J.B. Lee, H.J. Le, S.H. Seo, and J.S. Park: Characterization of undoped and Cu-doped ZnO films for surface acoustic wave applications. Thin Solid Films 398-399, 641–646 (2001).

    Article  Google Scholar 

  28. 28.

    A. Sawalha, M. Abu-Abdeen, and A. Sedky: Electrical conductivity study in pure and doped ZnO ceramic system. Phys. B, Condens. Matter 404, 1316–1320 (2009).

    CAS  Article  Google Scholar 

  29. 29.

    T. Larbi, B. Ouni, A. Boukachem, K. Boubaker, and M. Amlouk: Electrical measurements of dielectric properties of molybdenum-doped zinc oxide thin films. Mater. Sci. Semicond. Proc. 22, 50–58 (2014).

    CAS  Article  Google Scholar 

  30. 30.

    B. Demirselcuk, and V. Bilgin: Ultrasonically sprayed ZnO:Co thin films: growth and characterizationa. Appl. Surf. Sci. 273, 478–483 (2013).

    CAS  Article  Google Scholar 

  31. 31.

    G.W. Tomlins, J.L. Routbort, and T.O. Mason: Zinc self-diffusion, electrical properties, and defect structure of undoped, single crystal zinc oxide. J. Appl. Phys. 87, 117–123 (2000).

    CAS  Article  Google Scholar 

  32. 32.

    A.V. Patil, C.G. Dighavkar, S.K. Sonawane, S.J. Patil, and R.Y. Borse: Effect of firing temperature on electrical and structural characteristics of screen printed ZnO thick films. J. Optoelectron. Biomed. Mater. 1, 226–233 (2009).

    Google Scholar 

  33. 33.

    C.S. Hong, H.H. Park, H.H. Park, and H.J. Chang: Optical and electrical properties of ZnO thin film containing nano-sized Ag particles. J. Electroceram. 22, 353–356 (2008).

    Article  Google Scholar 

  34. 34.

    S.S. Shinde, P.S. Shinde, C.H. Bhosale, and K.Y. Rajpure: Optoelectronic properties of sprayed transparent and conducting indium doped zinc oxide thin films. J. Phys. D: Appl. Phys. 41, 105109, P6 (2008).

    Article  Google Scholar 

  35. 35.

    M. Mazilu, N. Tigau, and V. Musat: Optical properties of undoped and Al-doped ZnO nanostructures grown from aqueous solution on glass substrate. Opt. Mater. 34, 1833–1838 (2012).

    CAS  Article  Google Scholar 

  36. 36.

    M.J. Divya, C. Sowmia, K. Joona, and K.P. Dhanya: Synthesis of zinc oxide nanoparticle from Hibiscus rosa-sinensis leaf extract and investigation of its antimicrobial activity. Res. J. Pharm. Biol. Chem. 4, 1137–1142 (2013).

    CAS  Google Scholar 

  37. 37.

    S. Divyapriya, C. Sowmia, and S. Sasikala: Synthesis of zinc oxide nanoparticles and antimicrobial activity of Murraya koenigii. World J. Pharm. Pharm. Sci. 3, 1635–1645 (2014).

    Google Scholar 

Download references

Acknowledgment

This work was supported by the Turkish Scientific and Technical Research Institute (TUBITAK) (Grant No: 115F045) and Çankiri Karatekin University Research Funds (Grant No. FF231215L40).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Ercan Karaköse.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Karaköse, E., Çolak, H. Structural, electrical, and antimicrobial characterization of green synthesized ZnO nanorods from aqueous Mentha extract. MRS Communications 8, 577–585 (2018). https://doi.org/10.1557/mrc.2018.31

Download citation