Rejuvenation of soft material-actuator


Akin to the natural tissues, soft artificial muscles possess a life cycle limited by aging and degradation phenomena. Here, we propose a rejuvenation method aimed at silicone-ethanol soft composite actuators, in which ethanol escape occurs during prolonged actuation, thus compromising their performance. The rejuvenation is achieved by immersion of the material-actuator in ethanol, allowing its diffusion into the silicone-based material until saturation. Repeatable rejuvenation of a soft robot, based on the soft material-actuator, resulted in retention of up to 100% of its functionality. Thus, we suggest that this method may be used for the rejuvenation of soft artificial muscles and material-actuators.

This is a preview of subscription content, access via your institution.

Figure 1
Figure 2
Table I
Figure 3
Figure 4
Figure 5
Figure 6


  1. 1.

    D. Rus, and M.T. Tolley: Design, fabrication and control of soft robots. Nature 521, 467 (2015).

    CAS  Article  Google Scholar 

  2. 2.

    A. Miriyev, K. Stack, and H. Lipson: Soft material for soft actuators. Nat. Commun. 8, 1 (2017).

    CAS  Article  Google Scholar 

  3. 3.

    S. Sridar, C.J. Majeika, P. Schaffer, M. Bowers, S. Ueda, A.J. Barth, J.L. Sorrells, J.T. Wu, T.R. Hunt, and M. Popovic: Hydro Muscle - a novel soft fluidic actuator. In 2016 IEEE Int. Conf. on Robotics and Automation (IEEE, 2016), pp. 4014–4021.

    Google Scholar 

  4. 4.

    R.F. Shepherd, F. Ilievski, W. Choi, S.A. Morin, A.A. Stokes, A.D. Mazzeo, X. Chen, M. Wang, and G.M. Whitesides: Multigait soft robot. Proc. Natl. Acad. Sci. USA 108, 20400 (2011).

    CAS  Article  Google Scholar 

  5. 5.

    M.T. Tolley, R.F. Shepherd, B. Mosadegh, K.C. Galloway, M. Wehner, M. Karpelson, R.J. Wood, and G.M. Whitesises: A resilient, untethered soft robot. Soft Robot. 1, 213 (2014).

    Article  Google Scholar 

  6. 6.

    P. Polygerinos, Z. Wang, K.C. Galloway, R.J. Wood, and C.J. Walsh: Soft robotic glove for combined assistance and at-home rehabilitation. Rob. Auton. Syst. 73, 135 (2015).

    Article  Google Scholar 

  7. 7.

    A.D. Marchese, R.K. Katzschmann, and D. Rus: A Recipe for soft fluidic elastomer robots. Soft Robot. 2, 7 (2015).

    Article  Google Scholar 

  8. 8.

    A. De Greef, P. Lambert, and A. Delchambre: towards flexible medical instruments: Review of flexible fluidic actuators. Precis. Eng. 33, 311 (2009).

    Article  Google Scholar 

  9. 9.

    C.-P. Chou, and B. Hannaford: Measurement and modeling of McKibben pneumatic artificial muscles. IEEE Trans. Robot. Autom. 12, 90 (1996).

    Article  Google Scholar 

  10. 10.

    S. C. Obiajulu, E. T. Roche, F. A. Pigula, and C. J. Walsh: In 37th Mechanisms and Robotics Conf. (ASME, 2013), Vol. 6A p. V06AT07A009.

    Google Scholar 

  11. 11.

    J. Wirekoh, and Y.-L. Park: Design of flat pneumatic artificial muscles. Smart Mater. Struct. 26, 35009 (2017).

    Article  Google Scholar 

  12. 12.

    C. T. Nguyen, H. Phung, T. D. Nguyen, H. Jung, and H. R. Choi: Multiple-degrees-of-freedom dielectric elastomer actuators for soft printable hexapod robot. Sens. Actuators A Phys. 267, 505 (2017).

    CAS  Article  Google Scholar 

  13. 13.

    A. O’Halloran, F. O’Malley, and P. McHugh: A review on dielectric elastomer actuators, technology, applications, and challenges. J. Appl. Phys. 104, 1 (2008).

    Article  Google Scholar 

  14. 14.

    G.-Y. Gu, J. Zhu, L.-M. Zhu, and X. Zhu: A survey on dielectric elastomer actuators for soft robots. Bioinspir. Biomim. 12, 11003 (2017).

    Article  Google Scholar 

  15. 15.

    R. V. Martinez, A. C. Glavan, C. Keplinger, A. I. Oyetibo, and G. M. Whitesides: Soft Actuators and Robots that Are Resistant to Mechanical Damage. Adv. Funct. Mater. 24, 3003 (2014).

    CAS  Article  Google Scholar 

  16. 16.

    S. Terryn, G. Mathijssen, J. Brancart, D. Lefeber, G. Van Assche, and B. Vanderborght: Development of a self-healing soft pneumatic actuator: a first concept. Bioinspir. Biomim. 10, 46007 (2015).

    Article  Google Scholar 

  17. 17.

    R. F. Shepherd, A. A. Stokes, R. M. D. Nunes, and G. M. Whitesides: Soft machines that are resistant to puncture and that self seal. Adv. Mater. 25, 6709 (2013).

    CAS  Article  Google Scholar 

  18. 18.

    R. A. Bilodeau, and R. K. Kramer: Self-healing and damage resilience for soft robotics: a review. Front. Robot. AI 4, 48 (2017).

    Article  Google Scholar 

  19. 19.

    S. Hunt, T. G. McKay, and I. A. Anderson: A self-healing dielectric elastomer actuator. Appl. Phys. Lett. 104, 113701 (2014).

    Article  Google Scholar 

  20. 20.

    E. Acome, S. K. Mitchell, T. G. Morrissey, M. B. Emmett, C. Benjamin, M. King, M. Radakovitz, and C. Keplinger: Hydraulically amplified self-healing electrostatic actuators with muscle-like performance. Science 359, 61 (2018).

    CAS  Article  Google Scholar 

  21. 21.

    S. Pourazadi, A. Shagerdmootaab, H. Chan, M. Moallem, and C. Menon: On the electrical safety of dielectric elastomer actuators in proximity to the human body. Smart Mater. Struct. 26, 115007 (2017).

    Article  Google Scholar 

  22. 22.

    A. Miriyev, G. Caires, and H. Lipson: Functional properties of silicone/ethanol soft-actuator composites. Mater. Des. (2018).

    Google Scholar 

  23. 23.

    Y. Tamai, H. Tanaka, and K. Nakanishi: Molecular simulation of permeation of small penetrants through membranes. 1. diffusion coefficients. Macromolecules 27, 4498 (1994).

    CAS  Article  Google Scholar 

  24. 24.

    K. Okamoto, S. Nishioka, S. Tsuru, S. Sasaki, K. Tanaka, and H. Kita: Sorption and pervaporation of water-organic liquid mixtures through polydimethylsiloxane. Kobunshi Ronbunshu 45, 993 (1988).

    CAS  Article  Google Scholar 

  25. 25.

    J. Comyn: In Polym. Permeability (Springer, Dordrecht, Netherlands, 1985), pp. 1–10.

    Google Scholar 

  26. 26.

    J. Crank: The Mathematics of Diffusion (Oxford University Press, New York, 1975).

    Google Scholar 

  27. 27.

    F. Jones: In Theory Color. Text (Society of Dyers and Colorists, Bradford, West Yorkshire, UK, 1989), pp. 373–427.

    Google Scholar 

  28. 28.

    J. Crank, and G. S. Park: Diffusion in Polymer, First Edit (Academic Press, London and New York, 1968).

    Google Scholar 

  29. 29.

    M. Karimi: In Mass Transfer in Chemical Engineering Processes (InTech, Rijeka, Croatia, 2011).

    Google Scholar 

Download references


We wish to acknowledge the help of the Columbia University Preclinical Molecular Imaging Laboratory under the direction of Dr. Lynne Johnson and specifically the technical assistance of Mr. Jordan M. Johnson in performing the micro-CTs. We thank Mr. Artur Autz of the Department of Bio-Medical Engineering at Columbia University for providing the mechanical testing equipment. This work was supported in part by the Israel Ministry of Defense (IMOD) Grant number 4440729085 for Soft Robotics. AM acknowledges support from the Columbia University funds.

Author information



Corresponding author

Correspondence to Aslan Miriyev.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Miriyev, A., Trujillo, C., Caires, G. et al. Rejuvenation of soft material-actuator. MRS Communications 8, 556–561 (2018).

Download citation