Structure of capillary suspensions and their versatile applications in the creation of smart materials

Abstract

In this paper, we reviewed recent research in the field of capillary suspensions and highlight a variety of applications in the field of smart materials. Capillary suspensions are liquid-liquid-solid ternary systems where only one liquid is present in a few percent and induces a strong, capillary-induced particle network. These suspensions have a large potential for exploitation, particularly in the production of porous materials since the paste itself and the properties of the final material can be adapted. We also discussed the rheological properties of the suspension and network structure to highlight the various ways these systems can be tuned.

This is a preview of subscription content, access via your institution.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

References

  1. 1.

    E. Koos and N. Willenbacher: Capillary forces in suspension rheology. Science 331, 897–900 (2011).

    CAS  Article  Google Scholar 

  2. 2.

    T. Domenech and S. Velankar: Capillary-driven percolating networks in ternary blends of immiscible polymers and silica particles. Rheol. Acta 53, 593–605 (2014).

    CAS  Article  Google Scholar 

  3. 3.

    J. Yang and S.S. Velankar: Preparation and yielding behavior of pendular network suspensions. J. Rheol. (N. Y. N. Y). 61, 217–228 (2017).

    CAS  Article  Google Scholar 

  4. 4.

    J. Xu, L. Chen, H. Choi, H. Konish, and X. Li: Assembly of metals and nanoparticles into novel nanocomposite superstructures. Sci. Rep. 3, 1730 (2013).

    Article  CAS  Google Scholar 

  5. 5.

    T.S. Dunstan, A.A.K. Das, P. Starck, S.D. Stoyanov, and V.N. Paunov: Capillary structured suspensions from in situ hydrophobized calcium carbonate particles suspended in a polar liquid media. Langmuir 34, 442–452 (2018).

    CAS  Article  Google Scholar 

  6. 6.

    T. Domenech and S.S. Velankar: Microstructure, phase inversion and yielding in immiscible polymer blends with selectively wetting silica particles. J. Rheol. 61, 363–377 (2017).

    CAS  Article  Google Scholar 

  7. 7.

    K.D. Danov, M.T. Georgiev, P.A. Kralchevsky, G.M. Radulova, T. D. Gurkov, S.D. Stoyanov, and E.G. Pelan: Hardening of particle/oil/ water suspensions due to capillary bridges: experimental yield stress and theoretical interpretation. Adv. Colloid Interface Sci. 251, 80–96 (2018).

    CAS  Article  Google Scholar 

  8. 8.

    S. Hoffmann, E. Koos, and N. Willenbacher: Using capillary bridges to tune stability and flow behavior of food suspensions. Food Hydrocoll. 40, 44–52 (2014).

    CAS  Article  Google Scholar 

  9. 9.

    S. Wollgarten, C. Yuce, E. Koos, and N. Willenbacher: Tailoring flow behavior and texture of water based cocoa suspensions. Food Hydrocoll. 52, 167–174 (2016).

    CAS  Article  Google Scholar 

  10. 10.

    B. Bitsch, J. Dittmann, M. Schmitt, P. Scharfer, W. Schabel, and N. Willenbacher: A novel slurry concept for the fabrication of lithium-ion battery electrodes with beneficial properties. J. Power Sources 265, 81–90 (2014).

    CAS  Article  Google Scholar 

  11. 11.

    B. Bitsch, T. Gallasch, M. Schroeder, M. Börner, M. Winter, and N. Willenbacher: Capillary suspensions as beneficial formulation concept for high energy density Li-ion battery electrodes. J. Power Sources 328, 114–123 (2016).

    CAS  Article  Google Scholar 

  12. 12.

    M. Schneider, E. Koos, and N. Willenbacher: Highly conductive, printable pastes from capillary suspensions. Sci. Rep. 6, 31367 (2016).

    CAS  Article  Google Scholar 

  13. 13.

    M. Schneider, J. Maurath, S.B. Fischer, M. Weiß, N. Willenbacher, and E. Koos: Suppressing crack formation in particulate systems by utilizing capillary forces. ACS Appl. Mater. Interfaces 9, 11095–11105 (2017).

    CAS  Article  Google Scholar 

  14. 14.

    L. Jampolski, A. Sanger, T. Jakobs, G. Guthausen, T. Kolb, and N. Willenbacher: Improving the processability of coke water slurries for entrained flow gasification, Fuel 185, 102–111 (2016).

    CAS  Article  Google Scholar 

  15. 15.

    E. Koos, J. Dittmann, and N. Willenbacher: Kapillarkrafte in Suspensionen: Rheologische Eigenschaften und potenzielle Anwendungen. Chemie-lngenieur-Technik 83, 1305–1309 (2011).

    CAS  Article  Google Scholar 

  16. 16.

    J. Dittmann and N. Willenbacher: Micro structural investigations and mechanical properties of macro porous ceramic materials from capillary suspensions. J. Am. Ceram. Soc. 97, 3787–3792 (2014).

    CAS  Article  Google Scholar 

  17. 17.

    J. Dittmann, J. Maurath, B. Bitsch, and N. Willenbacher: Highly porous materials with unique mechanical properties from smart capillary suspensions. Adv. Mater. 28, 1689–1696 (2016).

    CAS  Article  Google Scholar 

  18. 18.

    E. Koos and N. Willenbacher: Particle configurations and gelation in capillary suspensions. Soft Matter 8, 3988 (2012).

    CAS  Article  Google Scholar 

  19. 19.

    F. Bossier and E. Koos: Structure of particle networks in capillary suspensions with wetting and nonwetting fluids. Langmuir 32, 1489–1501 (2016).

    Article  CAS  Google Scholar 

  20. 20.

    A.A.K. Das, T.S. Dunstan, S.D. Stoyanov, P. Starck, and V.N. Paunov: Thermally responsive capillary suspensions. ACS Appl. Mater. Interfaces 9, 44152–44160 (2017).

    CAS  Article  Google Scholar 

  21. 21.

    T. Domenech and S.S. Velankar: On the rheology of pendular gels and morphological developments in paste-like ternary systems based on capillary attraction. Soft Matter 11, 1500–1516 (2015).

    CAS  Article  Google Scholar 

  22. 22.

    S.J. Heidlebaugh, T. Domenech, S.V. lasella, and S.S. Velankar: Aggregation and separation in ternary particle/oil/water systems with fully wettable particles. Langmuir 30, 63–74 (2014).

    CAS  Article  Google Scholar 

  23. 23.

    T. Domenech, J. Yang, S. Heidlebaugh, and S.S. Velankar: Three distinct open-pore morphologies from a single particle-filled polymer blend. Phys. Chem. Chem. Phys. 18, 4310–4315 (2016).

    CAS  Article  Google Scholar 

  24. 24.

    J. Yang, D. Roell, M. Echavarria, and S.S. Velankar: A microstructure-composition map of a ternary liquid/liquid/particle system with partially-wetting particles. Soft Matter 13, 8579–8589 (2017).

    CAS  Article  Google Scholar 

  25. 25.

    K. Hauf, K. Riazi, N. Willenbacher, and E. Koos: Radical polymerization of capillary bridges between micron-sized particles in liquid bulk phase as a low-temperature route to produce porous solid materials. Colloid Polym. Sci. 295, 1773–1785 (2017).

    CAS  Article  Google Scholar 

  26. 26.

    S. Roh, D.P. Parekh, B. Bharti, S.D. Stoyanov, and O.D. Velev: 3D Printing by multiphase silicone/water capillary inks. Adv. Mater. 29, 1–7 (2017).

    Google Scholar 

  27. 27.

    J. Dittmann, E. Koos, and N. Willenbacher: Ceramic capillary suspensions: novel processing route for macroporous ceramic materials. J. Am. Ceram. Soc. 96, 391–397 (2013).

    CAS  Article  Google Scholar 

  28. 28.

    J. Maurath, J. Dittmann, N. Schultz, and N. Willenbacher: Fabrication of highly porous glass filters using capillary suspension processing. Sep. Purif Technol. 149, 470–478 (2015).

    CAS  Article  Google Scholar 

  29. 29.

    J. Maurath and N. Willenbacher: 3D printing of open-porous cellular ceramics with high specific strength. J. Eur. Ceram. Soc. 37, 4833–4842 (2017).

    CAS  Article  Google Scholar 

  30. 30.

    J. Maurath, B. Bitsch, Y. Schwegler, and N. Willenbacher: Influence of particle shape on the rheological behavior of three-phase non-Brownian suspensions. Colloids Surf. A Physicochem. Eng. Asp. 497, 316–326 (2016).

    CAS  Article  Google Scholar 

  31. 31.

    F. Bossier, L. Weyrauch, R. Schmidt, and E. Koos: Influence of mixing conditions on the rheological properties and structure of capillary suspensions. Colloids Surf. A Physicochem. Eng. Asp. 518, 85–97 (2017).

    Article  CAS  Google Scholar 

  32. 32.

    C.D. Willet, M.J. Adams, S.A. Johnson, and J.P.K. Seville: Capillary bridges between two spherical bodies. Langmuir 16, 9396–9405 (2000).

    Article  CAS  Google Scholar 

  33. 33.

    O. Pitois, P. Moucheront, and X. Chateau: Rupture energy of a pendular liquid bridge. Eur. Phys. J. BIZ, 79–86 (2001).

    Google Scholar 

  34. 34.

    H.J. Butt and M. Kappl: Normal capillary forces. Adv. Colloid Interface Sci. 146, 48–60 (2009).

    CAS  Article  Google Scholar 

  35. 35.

    W. Pietsch, and H. Rumpf: Haftkraft, Kapillardruck. Fliissigkeitsvolumen und Grenzwinkel einer Fliissigkeitsbriicke zwischen zwei Kugel. Chem. Ing. Tech. 15, 885–893 (1967).

    Article  Google Scholar 

  36. 36.

    E. Koos, J. Johannsmeier, L. Schwebler, and N. Willenbacher: Tuning suspension rheology using capillary forces. Soft Matters, 6620 (2012).

    Google Scholar 

  37. 37.

    C.L. Flemmer: On the regime boundaries of moisture in granular materials. Powder Technol. 66, 191–194 (1991). 12287813

    CAS  Article  Google Scholar 

  38. 38.

    F. Bossier, J. Maurath, K. Dyhr, N. Willenbacher, and E. Koos: Fractal approaches to characterize structure of capillary suspensions using rheology and confocal microscopy. J. Rheol. 62, 183 (2018).

    Article  CAS  Google Scholar 

  39. 39.

    J.-M. Piau, M. Dorget, J.-F. Palierne, and A. Pouchelon: Shear elasticity and yield stress of silica-silicone physical gels: fractal approach. J. Rheol. 43, 305–314 (1999).

    CAS  Article  Google Scholar 

  40. 40.

    H. Wu and M. Morbidelli: Model relating structure of colloidal gels to their elastic properties. Langmuir 17, 1030–1036 (2001).

    CAS  Article  Google Scholar 

  41. 41.

    E. Koos, W. Kannowade, and N. Willenbacher: Restructuring and aging in a capillary suspension. Rheol. Acta 53, 947–957 (2014).

    Article  CAS  Google Scholar 

  42. 42.

    S.S. Velankar: A non-equilibrium state diagram for liquid/fluid/particle mixtures. Soft Matter 11, 8393–8403 (2015).

    CAS  Article  Google Scholar 

  43. 43.

    Y. Zhang, M.C. Allen, R. Zhao, D.D. Deheyn, S.H. Behrens, and J. C. Meredith: Capillary foams: stabilization and functionalization of porous liquids and solids. Langmuir 31, 2669–2676 (2015).

    CAS  Article  Google Scholar 

  44. 44.

    B. Bharti, A.-L. Fameau, M. Rubinstein, and O.D. Velev: Nanocapillarity-mediated magnetic assembly of nanoparticles into ultraflexible filaments and reconfigurable networks. Nat. Mater. 14, 1104–1109 (2015).

    CAS  Article  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the financial support from the European Research Council under the European Union’s Seventh Framework Program (FP/2007–2013)/ERC Grant Agreement no. 335380.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Erin Koos.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hauf, K., Koos, E. Structure of capillary suspensions and their versatile applications in the creation of smart materials. MRS Communications 8, 332–342 (2018). https://doi.org/10.1557/mrc.2018.28

Download citation