Optimizing thermal conduction in bulk polycrystalline SrTiO3−δ ceramics via oxygen non-stoichiometry

Abstract

while SrTiO3 exhibits promising electronic transport properties, its high thermal conductivity (κ) is detrimental for its use as a thermoelectric material. Here, we investigate the influence of oxygen non-stoichiometry on κ in bulk SrTiO3 ceramics. A significant reduction in κ was achieved in oxygen deficient SrTiO3−δ, owing to the presence of oxygen vacancies that act as phonon scattering centers. Upon oxidation of SrTiO3−δ, the κ of pristine SrTiO3 was recovered, suggesting that oxygen vacancies were indeed responsible for the reduction in κ. Raman spectroscopy was used as an independent tool to confirm the reduction of oxygen vacancies in SrTiO3−δ upon oxidation.

This is a preview of subscription content, access via your institution.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

References

  1. 1.

    J.F. Schooley, W.R. Hosler, and M.L. Cohen: Superconductivity in semiconducting SrTiO3. Phys. Rev. Lett. 12, 474 (1964).

    CAS  Article  Google Scholar 

  2. 2.

    C. Mitra, C. Lin, J. Robertson, and A.A. Demkov: Electronic structure of oxygen vacancies in SrTiO3 and LaAlO3. Phys. Rev. B 86, 155105 (2012).

    Article  Google Scholar 

  3. 3.

    D. Kan, T. Terashima, R. Kanda, A. Masuno, K. Tanaka, S. Chu, H. Kan, A. Ishizumi, Y. Kanemitsu, Y. Shimakawa, and M. Takano: Blue-light emission at room temperature from Ar+-irradiated SrTiO3. Nat. Mater. 4, 816 (2005).

    CAS  Article  Google Scholar 

  4. 4.

    K. Szot, W. Speier, G. Bihlmayer, and R. Waser: Switching the electrical resistance of individual dislocations in single-crystalline SrTiO3. Nat. Mater. 5, 312 (2006).

    CAS  Article  Google Scholar 

  5. 5.

    M. Janousch, G.I. Meijer, U. Staub, B. Delley, S.E. Karg, and B.P. Andreasson: Role of oxygen vacancies in Cr-doped SrTiO3 for resistance-change memory. Adv. Mater. 19, 2232 (2007).

    CAS  Article  Google Scholar 

  6. 6.

    W.D. Rice, P. Ambwani, J.D. Thompson, C. Leighton, and S.A. Crooker: Revealing optically induced magnetization in SrTiO3 using optically coupled SQUID magnetometry and magnetic circular dichroism. J. Vac. Sci. Technol. B, Nanotechnol. Microelectron. Mater. Process. Meas. Phenom. 32, 04E102 (2014).

    Google Scholar 

  7. 7.

    I. Yoshida: Thermal conduction in ferroelectric ceramics. J. Phys. Soc. Jpn. 15, 2211 (1960).

    CAS  Article  Google Scholar 

  8. 8.

    Y. Suemune: Thermal conductivity of BaTiO3 and SrTiO3 from 4.5 to 300 K. J. Phys. Soc. Jpn. 20, 174 (1965).

    CAS  Article  Google Scholar 

  9. 9.

    E.F. Steigmeier: Field effect on the Cochran modes in SrTiO3 and KTaO3. Phys. Rev. 168, 523 (1968).

    CAS  Article  Google Scholar 

  10. 10.

    Y. Wang, K. Fujinami, R. Zhang, C. Wan, N. Wang, Y. Ba, and K. Koumoto: Interfacial thermal resistance and thermal conductivity in nanograined SrTiO3. Appl. Phys. Express 3, 031101 (2010).

    Article  Google Scholar 

  11. 11.

    E. Breckenfeld, R. Wilson, J. Karthik, A.R. Damodaran, D.G. Cahill, and L.W. Martin: Effect of growth induced (non)stoichiometry on the structure, dielectric response, and thermal conductivity of SrTiO3 thin films. Chem. Mater. 24, 331 (2012).

    CAS  Article  Google Scholar 

  12. 12.

    B.M. Foley, H.J. Brown-Shaklee, J.C. Duda, R. Cheaito, B.J. Gibbons, D. Medlin, J.F. Ihlefeld, and P.E. Hopkins: Thermal conductivity of nano-grained SrTiO3 thin films. Appl. Phys. Lett. 101, 231908 (2012).

    Article  Google Scholar 

  13. 13.

    D.-W. Oh, J. Ravichandran, C.-W. Liang, W. Siemons, B. Jalan, C.M. Brooks, M. Huijben, D.G. Schlom, S. Stemmer, L.W. Martin, A. Majumdar, R. Ramesh, and D.G. Cahill: Thermal conductivity as a metric for the crystalline quality of SrTiO3 epitaxial layers. Appl. Phys. Lett. 98, 221904 (2011).

    Article  Google Scholar 

  14. 14.

    S.R. Popuri, A.J.M. Scott, R.A. Downie, M.A. Hall, E. Suard, R. Decourt, M. Pollet, and J.W.G. Bos: Glass-like thermal conductivity in SrTiO3 thermoelectrics induced by A-site vacancies. RSC Adv. 4, 33720 (2014).

    CAS  Article  Google Scholar 

  15. 15.

    B. Zhang, J. Wang, T. Zou, S. Zhang, X. Yaer, N. Ding, C. Liu, L. Miao, Y. Li, and Y. Wu: High thermoelectric performance of Nb-doped SrTiO3 bulk materials with different doping levels. J. Mater. Chem. C 3, 11406 (2015).

    CAS  Article  Google Scholar 

  16. 16.

    D. Srivastava, C. Norman, F. Azough, M.C. Schäfer, E. Guilmeau, and R. Freer: Improving the thermoelectric properties of SrTiO3-based ceramics with metallic inclusions. J. Alloys Compd. 731, 723 (2018).

    CAS  Article  Google Scholar 

  17. 17.

    S. Bhattacharya, A. Mehdizadeh Dehkordi, S. Tennakoon, R. Adebisi, J.R. Gladden, T. Darroudi, H.N. Alshareef, and T.M. Tritt: Role of phonon scattering by elastic strain field in thermoelectric Sr1−xYxTiO3−δ. J. Appl. Phys. 115, 223712 (2014).

    Article  Google Scholar 

  18. 18.

    S. Bhattacharya, A.M. Dehkordi, H.N. Alshareef, and T.M. Tritt: Synthesis-property relationship in thermoelectric Sr1−xYbxTiO3−δ ceramics. J. Phys. D: Appl. Phys. 47, 385302 (2014).

    Article  Google Scholar 

  19. 19.

    A. Mehdizadeh Dehkordi, S. Bhattacharya, T. Darroudi, J.W. Graff, U. Schwingenschlögl, H.N. Alshareef, and T.M. Tritt: Large thermoelectric power factor in Pr-doped SrTiO3−δ ceramics via grain-boundary-induced mobility enhancement. Chem. Mater. 26, 2478 (2014).

    CAS  Article  Google Scholar 

  20. 20.

    A.M. Dehkordi, S. Bhattacharya, J. He, H.N. Alshareef, and T.M. Tritt: Significant enhancement in thermoelectric properties of polycrystalline Pr-doped SrTiO3−δ ceramics originating from nonuniform distribution of Pr dopants. Appl. Phys. Lett. 104, 3 (2014).

    Article  Google Scholar 

  21. 21.

    P. Puneet, R. Podila, M. Karakaya, S. Zhu, J. He, T.M. Tritt, M.S. Dresselhaus, and A.M. Rao: Preferential scattering by interfacial charged defects for enhanced thermoelectric performance in few-layered n-type Bi2Te3. Sci. Rep. 3, 1 (2013).

    Article  Google Scholar 

  22. 22.

    F. Liu, L. Hu, M. Karakaya, P. Puneet, R. Rao, R. Podila, S. Bhattacharya, and A.M. Rao: A micro-Raman study of exfoliated few-layered n-type Bi2Te2.7Se0.3. Sci. Rep. 7, 16535 (2017).

    Article  Google Scholar 

  23. 23.

    B. Khasimsaheb, S. Neeleshwar, M. Srikanth, S. Bathula, B. Gahtori, A.K. Srivsatava, A. Dhar, A. Sankarakumar, B.K. Panigrahi, S. Bhattacharya, R. Polida, and A.M. Rao: Thermoelectric properties of spark plasma sintered lead telluride nanocubes. J. Mater. Res. 30, 1 (2015).

    Article  Google Scholar 

  24. 24.

    K. Momma and F. Izumi: VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Crystallogr. 44, 1272 (2011).

    CAS  Article  Google Scholar 

  25. 25.

    W. Kraus and G. Nolze: POWDER CELL - A program for the representation and manipulation of crystal structures and calculation of the resulting x-ray powder patterns. J. Appl. Crystallogr. 29, 301 (1996).

    CAS  Article  Google Scholar 

  26. 26.

    A. Boultif and D. Louër: Powder pattern indexing with the dichotomy method. J. Appl. Crystallogr. 37, 724 (2004).

    CAS  Article  Google Scholar 

  27. 27.

    A.L. Pope, B. Zawilski, and T.M. Tritt: Description of removable sample mount apparatus for rapid thermal conductivity measurements. Cryogenics (Guildf). 41, 725 (2001).

    CAS  Article  Google Scholar 

  28. 28.

    G. Li and J.R. Gladden: High temperature resonant ultrasound spectroscopy: a review. Int. J. Spectrosc. 2010, 1 (2010).

    Google Scholar 

  29. 29.

    W. Gong, H. Yun, Y.B. Ning, J.E. Greedan, W.R. Datars, and C.V. Stager: Oxygen-deficient SrTiO3−x, x = 0.28, 0.17, and 0.08. crystal growth, crystal structure, magnetic, and transport properties. J. Solid State Chem. 90, 320 (1991).

    CAS  Article  Google Scholar 

  30. 30.

    T.M. Tritt: Thermoelectric phenomena, materials, and applications. Annu. Rev. Mater. Res. 41, 433 (2011).

    CAS  Article  Google Scholar 

  31. 31.

    A. Migliori, J.L. Sarrao, W.M. Visscher, T.M. Bell, M. Lei, Z. Fisk, and R.G. Leisure: Resonant ultrasound spectroscopic techniques for measurement of the elastic moduli of solids. Phys. B: Condens. Matter 183, 1 (1993).

    CAS  Article  Google Scholar 

  32. 32.

    J. Callaway: Model for lattice thermal conductivity at low temperatures. Phys. Rev. 113, 1046 (1959).

    CAS  Article  Google Scholar 

  33. 33.

    P. Klemens: Thermal resistance due to point defects at high temperatures. Phys. Rev. 119, 507 (1960).

    CAS  Article  Google Scholar 

  34. 34.

    P.G. Klemens: Phonon scattering by oxygen vacancies in ceramics. Phys. B: Condens. Matter 263-264, 102 (1999).

    Article  Google Scholar 

  35. 35.

    W.G. Nilsen and J.G. Skinner: Raman spectrum of strontium titanate. J. Chem. Phys. 48, 2240 (1968).

    CAS  Article  Google Scholar 

  36. 36.

    D.A. Tenne, I.E. Gonenli, A. Soukiassian, D.G. Schlom, S.M. Nakhmanson, K.M. Rabe, and X.X. Xi: Raman study of oxygen reduced and re-oxidized strontium titanate. Phys. Rev. B - Condens. Matter Mater. Phys. 76, 1 (2007).

    Article  Google Scholar 

Download references

Acknowledgments

The research was supported by KAUST-Clemson Faculty Initiated collaboration grant. The authors would like to thank W.G. Nilsen and J.G. Skinner[35] for the reprint their Raman spectra to directly compare with our Raman spectra. The authors would like to acknowledge useful discussions with Dr. Colin McMillen (Clemson University) on the XRD analysis of these samples and Mr. Herbert Behlow on stoichiometric analysis.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Sriparna Bhattacharya.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Dehkordi, A.M., Bhattacharya, S., Darroudi, T. et al. Optimizing thermal conduction in bulk polycrystalline SrTiO3−δ ceramics via oxygen non-stoichiometry. MRS Communications 8, 1470–1476 (2018). https://doi.org/10.1557/mrc.2018.220

Download citation