Salt-templated platinum–palladium porous macrobeam synthesis


Here we present the synthesis of porous platinum–palladium macrobeams templated from high aspect ratio Magnus’ salt needle derivatives. The combination of [PtCl4]2− and/or [PdCl4]2− with [Pt(NH3)4]2+ ions results in salt needles ranging from 15 to 300 µm in length. Electrochemical reduction of the salt templates results in porous macrobeams with a square cross-section. Porous side wall texture and elemental composition was controlled with initial platinum to palladium salt ratio. Macrobeam free-standing films exhibited a specific capacitance up to 11.73 F/g and a solvent accessible surface area of 26.6 m2/g. These salt-templated porous platinum–palladium macrobeams offer a promising material for fuel cell catalysis.

This is a preview of subscription content, access via your institution.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Figure 1.
Figure 2.
Figure 3.
Table I.
Figure 4.


  1. 1.

    B. Jiang, K. Kani, M. Iqbal, H. Abe, T. Kimura, M.S.A. Hossain, O. Anjaneyulu, J. Henzie, and Y. Yamauchi: Mesoporous bimetallic RhCu alloy nanospheres using a sophisticated soft-templating strategy. Chem. Mater. 30, 428 (2018).

    CAS  Article  Google Scholar 

  2. 2.

    X. Qiu, Y. Dai, X. Zhu, H. Zhang, P. Wu, Y. Tang, and S. Wei: Template-engaged synthesis of hollow porous platinum–palladium alloy nanospheres for efficient methanol electro-oxidation. J. Power Sources 302, 195 (2016).

    CAS  Article  Google Scholar 

  3. 3.

    L. Liu, E. Pippel, R. Scholz, and U. Gösele: Nanoporous Pt-Co alloy nanowires: fabrication, characterization, and electrocatalytic properties. Nano Lett. 9, 4352 (2009).

    CAS  Article  Google Scholar 

  4. 4.

    C. Xu, Y. Zhang, L. Wang, L. Xu, X. Bian, H. Ma, and Y. Ding: Nanotubular mesoporous PdCu bimetallic electrocatalysts toward oxygen reduction reaction. Chem. Mater. 21, 3110 (2009).

    CAS  Article  Google Scholar 

  5. 5.

    Y. Yamauchi, A. Tonegawa, M. Komatsu, H. Wang, L. Wang, Y. Nemoto, N. Suzuki, and K. Kuroda: Electrochemical synthesis of mesoporous Pt–Au binary alloys with tunable compositions for enhancement of electrochemical performance. J. Am. Chem. Soc. 134, 5100 (2012).

    CAS  Article  Google Scholar 

  6. 6.

    M. Victor, A.E. Hamed, W. Hongjing, J. Bo, L. Cuiling, W.K.C.W., K.J. Ho, and Y. Yusuke: Nanoarchitectures for mesoporous metals. Adv. Mater. 28, 993 (2016).

    Article  Google Scholar 

  7. 7.

    Z. Peng and H. Yang: Designer platinum nanoparticles: Control of shape, composition in alloy, nanostructure and electrocatalytic property. Nano. Today. 4, 143 (2009).

    CAS  Article  Google Scholar 

  8. 8.

    V.R. Stamenkovic, B. Fowler, B.S. Mun, G. Wang, P.N. Ross, C.A. Lucas, and N.M. Markovic: Improved oxygen reduction activity on Pt3Ni(111) via increased surface site availability. Science 315, 493 (2007).

    CAS  Article  Google Scholar 

  9. 9.

    F.J. Burpo, E.A. Nagelli, L.A. Morris, J.P. McClure, M.Y. Ryu, and J.L. Palmer: Direct solution-based reduction synthesis of Au, Pd, and Pt aerogels. J. Mater. Res. 32, 4153 (2017).

    CAS  Article  Google Scholar 

  10. 10.

    L.X. Ding, A.L. Wang, G.R. Li, Z.Q. Liu, W.X. Zhao, C.Y. Su, and Y.X. Tong: Porous Pt-Ni-P composite nanotube arrays: highly electroactive and durable catalysts for methanol electrooxidation. J. Am. Chem. Soc. 134, 5730 (2012).

    CAS  Article  Google Scholar 

  11. 11.

    K. Eid, H. Wang, P. He, K. Wang, T. Ahamad, S.M. Alshehri, Y. Yamauchi, and L. Wang: One-step synthesis of porous bimetallic PtCu nanocrystals with high electrocatalytic activity for methanol oxidation reaction. Nanoscale 7, 16860 (2015).

    CAS  Article  Google Scholar 

  12. 12.

    Z.Y. Shih, C.W. Wang, G. Xu, and H.T. Chang: Porous palladium copper nanoparticles for the electrocatalytic oxidation of methanol in direct methanol fuel cells. J. Mater. Chem. A 1, 4773 (2013).

    CAS  Article  Google Scholar 

  13. 13.

    H. Zhang, M. Jin, and Y. Xia: Enhancing the catalytic and electrocatalytic properties of Pt-based catalysts by forming bimetallic nanocrystals with Pd. Chem. Soc. Rev. 41, 8035 (2012).

    CAS  Article  Google Scholar 

  14. 14.

    J. Wu, P. Li, Y.T. Pan, S. Warren, X. Yin, and H. Yang: Surface lattice-engineered bimetallic nanoparticles and their catalytic properties. Chem. Soc. Rev. 41, 8066 (2012).

    CAS  Article  Google Scholar 

  15. 15.

    C. Zhongwei, W. Mahesh, L. Wenzhen, and Y. Yushan: Supportless Pt and PtPd nanotubes as electrocatalysts for oxygen-reduction reactions. Angew. Chem. Int. Ed. 46, 4060 (2007).

    Article  Google Scholar 

  16. 16.

    S.S. Li, J.N. Zheng, A.J. Wang, F.L. Tao, J.J. Feng, J.R. Chen, and H. Yu: Branched platinum-on-palladium bimetallic heteronanostructures supported on reduced graphene oxide for highly efficient oxygen reduction reaction. J. Power Sources 272, 1078 (2014).

    CAS  Article  Google Scholar 

  17. 17.

    O. Winjobi, Z. Zhang, C. Liang, and W. Li: Carbon nanotube supported platinum–palladium nanoparticles for formic acid oxidation. Electrochim. Acta 55, 4217 (2010).

    CAS  Article  Google Scholar 

  18. 18.

    N.L. Vauquelin: Memoire sur le palladium et le rhodium. Ann. Chim. 88, 167 (1813).

    Google Scholar 

  19. 19.

    F.J. Burpo, E.A. Nagelli, S.J. Winter, J.P. McClure, S.F. Bartolucci, A.R. Burns, S.F. O’Brien, and D.D. Chu: Salt-templated hierarchically porous platinum macrotube synthesis. Chem. Select. 3, 4542 (2018).

    CAS  Google Scholar 

  20. 20.

    X. Xiao, H. Song, S. Lin, Y. Zhou, X. Zhan, Z. Hu, Q. Zhang, J. Sun, B. Yang, T. Li, L. Jiao, J. Zhou, J. Tang, and Y. Gogotsi: Scalable salt-templated synthesis of two-dimensional transition metal oxides. Nat. Commun. 7, 11296 (2016).

    CAS  Article  Google Scholar 

  21. 21.

    X. Xiao, H. Yu, H. Jin, M. Wu, Y. Fang, J. Sun, Z. Hu, T. Li, J. Wu, L. Huang, Y. Gogotsi, and J. Zhou: Salt-templated synthesis of 2D metallic MoN and other nitrides. ACS Nano 11, 2180 (2017).

    CAS  Article  Google Scholar 

  22. 22.

    G. Magnus: Ueber einige Verbindungen des Platinchlorürs. Ann. Phys. 90, 239 (1828).

    Article  Google Scholar 

  23. 23.

    C.A. Schneider, W.S. Rasband, and K.W. Eliceiri: NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 9, 671 (2012).

    CAS  Article  Google Scholar 

  24. 24.

    J. Bremi, D. Brovelli, W. Caseri, G. Hähner, P. Smith, and T. Tervoort: From Vauquelin’s and Magnus’ salts to gels, uniaxially oriented films, and fibers: synthesis, characterization, and properties of tetrakis(1-aminoalkane)metal(II) tetrachlorometalates(II). Chem. Mater. 11, 977 (1999).

    CAS  Article  Google Scholar 

  25. 25.

    W.P. Zhou, A. Lewera, R. Larsen, R.I. Masel, P.S. Bagus, and A. Wieckowski: Size effects in electronic and catalytic properties of unsupported palladium nanoparticles in electrooxidation of formic acid. J. Phys. Chem. B 110, 13393 (2006).

    CAS  Article  Google Scholar 

  26. 26.

    R. de Levie: On porous electrodes in electrolyte solutions—IV. Electrochim. Acta 9, 1231 (1964).

    Article  Google Scholar 

  27. 27.

    M. Lukaszewski: Electrochemical methods of real surface area determination of noble metal electrodes––an overview. Int. J. Electrochem. Sci. 11, 4442 (2016).

    CAS  Article  Google Scholar 

  28. 28.

    T. Biegler, D.A.J. Rand, and R. Woods: Limiting oxygen coverage on platinized platinum; relevance to determination of real platinum area by hydrogen adsorption. J. Electroanal. Chem. 29, 269 (1971).

    CAS  Article  Google Scholar 

  29. 29.

    G. Fu, K. Wu, J. Lin, Y. Tang, Y. Chen, Y. Zhou, and T. Lu: One-pot water-based synthesis of Pt–Pd alloy nanoflowers and their superior electrocatalytic activity for the oxygen reduction reaction and remarkable methanol-tolerant ability in acid media. J. Phys. Chem. C 117, 9826 (2013).

    CAS  Article  Google Scholar 

  30. 30.

    H.V. Hien, T.D. Thanh, N.D. Chuong, D. Hui, N.H. Kim, and J.H. Lee: Hierarchical porous framework of ultrasmall PtPd alloy-integrated graphene as active and stable catalyst for ethanol oxidation. Composites Part B 143, 96 (2018).

    CAS  Article  Google Scholar 

Download references


This work was funded by a United States Military Academy Faculty Development Research Fund grant. We appreciate the assistance with polarized optical microscopy from Lance Richardson from the Department of Chemistry and Life Science at the United States Military Academy.

Author information



Corresponding author

Correspondence to Fred. J. Burpo.

Additional information

These authors contributed equally.

Electronic supplementary material

Supplementary materials

Supplementary materials

The supplementary material for this article can be found at

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Burpo, F.J., Nagelli, E.A., Mitropoulos, A.N. et al. Salt-templated platinum–palladium porous macrobeam synthesis. MRS Communications 9, 280–287 (2019).

Download citation