Influence of electrolyte substrates on the Sr-segregation and SrSO4 formation in La0.6Sr0.4Co0.2Fe0.8O3_δ thin films


To systematically investigate the influence of electrolyte substrates on Sr-segregation and SrSO4 formation in (LaSr)(CoFe)O3 (LSCF) cathodes in solid oxide fuel cells, model thin films were grown on Gd-doped ceria (GDC) and on Y-doped BaZrO3 (BZY) electrolytes by pulsed laser deposition and heat treated at 800–1000 °C in synthetic air with a trace amount of SO2. A severe SrSO4 formation was observed in LSCF on GDC as compared with the BZY, especially at low temperature. The difference in Sr-segregation and SrSO4 formation on the LSCF was discussed in relation to Sr diffusion and related elemental redistribution across the interfaces.

This is a preview of subscription content, access via your institution.

Figure 1.
Figure 2.
Figure 3.
Figure 4.


  1. 1.

    H. Yokokawa, Y. Hori, T. Shigehisa, M. Suzuki, S. Inoue, T. Suto, K. Tomida, M. Shimazu, A. Kawakami, H. Sumi, M. Ohmori, N. Mori, T. Iha, K. Yamaji, H. Kishimoto, K. Develos-Bagarinao, K. Sasaki, S. Taniguchi, T. Kawada, M. Muramatsu, K. Terada, K. Eguchi, T. Matsui, H. Iwai, M. Kishimoto, N. Shikazono, Y. Mugikura, T. Yamamoto, M. Yoshikawa, K. Yasumoto, K. Asano, Y. Matsuzaki, S. Amaha, and T. Somekawa: Recent achievements of NEDO durability project with an emphasis on correlation between cathode overpotential and ohmic loss. Fuel Cells 2, 473 (2017).

    Article  Google Scholar 

  2. 2.

    H. Yokokawa, H. Tu, B. Iwanschitz, and A. Mai: Fundamental mechanisms limiting solid oxide fuel cell durability. J. Power Sources, 40, 400 (2008).

    Article  Google Scholar 

  3. 3.

    F. Wang, K. Yamaji, D. Cho, T. Shimonosono, H. Kishimoto, M.E. Brito, T. Horita, and H. Yokokawa: Effect of strontium concentration on sulfur poisoning of LSCF cathodes. Solid State lonics 225, 157 (2012).

    CAS  Article  Google Scholar 

  4. 4.

    F. Wang, K. Yamaji, D. Cho, T. Shimonoso, H. Kishimoto, M. Brito, T. Horita, and H. Yokokawa: Sulfur poisoning on La0.6Sr0.4Co0.2Fe0.8O3 cathode for SOFCs. J. Electrochem. Soc. 158, B1391 (2011).

    CAS  Article  Google Scholar 

  5. 5.

    F. Wang, K. Yamaji, D.H. Cho, T. Shimonosono, M. Nishi, H. Kishimoto, M.E. Brito, T. Horita, and H. Yokokawa: Evaluation of sulfur dioxide poisoning for LSCF cathodes. Fuel Cells 13, 520 (2013).

    Article  Google Scholar 

  6. 6.

    R. Liu, S. Taniguchi, Y. Shiratori, K. Ito, and S. Sasaki: Influence of S02 on the long-term durability of SOFC cathodes. ECS Trans. 35, 2255 (2011).

    CAS  Article  Google Scholar 

  7. 7.

    N. Sakai, T. Horita, K. Yamaji, M. Brito, H. Yokokawa, A. Kawakami, S. Matsuoka, N. Watanabe, and A. Ueno: Interface stability among solid oxide fuel cell materials with perovskite structures. J. Electrochem. Soc. 153, A621 (2006).

    CAS  Article  Google Scholar 

  8. 8.

    M. Izuki, M.E. Brito, K. Yamaji, H. Kishimoto, D.H. Cho, T. Shimonosono, T. Horita, and H. Yokokawa: Interfacial stability and cation diffusion across the LSCF/GDC interface. J. Power Sources 196, 7232 (2014).

    Article  Google Scholar 

  9. 9.

    J.C. De Vera, K. Develos-Bagarinao, H. Kishimoto, T. Ishiyama, K. Yamaji, T. Horita, and H. Yokokawa: Influence of La0.6Sr0.4Co0.2Fe0.8O3-δ micro-structure on GDC interlayer stability and cation diffusion across the LSCF/GDC/YSZ interfaces. J. Electrochem. Soc. 163, F1463 (2016).

    Article  Google Scholar 

  10. 10.

    J.C. DeVero, K. Develos-Bagarinao, H. Kishimoto, T. Ishiyama, K. Yamaji, T. Horita, and H. Yokokawa: Enhanced stability of solid oxide fuel cells by employing a modified cathode-interlayer interface with a dense La0.6Sr0.4Co0.2Fe0.8O3-δ thin film. J. Power Sources 377, 128 (2018).

    CAS  Article  Google Scholar 

  11. 11.

    K. Develos-Bagarinao, H. Yokokawa, H. Kishimoto, T. Ishiyama, K. Yamaji, and T. Horita: Elucidating the origin of oxide ion blocking effects at GDC/SrZr(Y)03/YSZ interfaces. J. Mater. Chem. A 5, 8733 (2017).

    CAS  Article  Google Scholar 

  12. 12.

    H. Iwahara, T. Yahia, and T. Hibino: Protonic conduction in calcium, strontium, and barium zirconates. Solid State Ionics 61, 65 (1993).

    CAS  Article  Google Scholar 

  13. 13.

    S. Oyama, and S. Yamaguchi: Phase relation in the BaO-Zr02-YO1.5 system: preparation of separate BaZr03 phases and complexity in phase formation. Solid State Ionics 197, 1 (2011).

    CAS  Article  Google Scholar 

  14. 14.

    P. Babilo, T. Uda, and S. Haile: Processing of yttrium-doped barium zirc-onate for high proton conductivity. J. Mater. Res. 22, 132 (2007).

    Article  Google Scholar 

  15. 15.

    J. Ten Elshof, and J. Boejisma: Influence of iron content on cell parameters of rhombohedral La0.6S0.4Co1-yFey03. Powder Diffr. 11, 240 (1996).

    Article  Google Scholar 

  16. 16.

    P. Chaudhari: Grain growth and stress relief in thin films. J. Vac. Sci. Technol. 9, 520 (1972).

    CAS  Article  Google Scholar 

  17. 17.

    T. Sasaki, K. Matsunaga, H. Ohta, H. Hosono, T. Yamamoto, and Y. Ikuhara: Atomic and electronic structures of Ni/YSZ(111) interface. Mater Trans. 45, 2137 (2004).

    CAS  Article  Google Scholar 

  18. 18.

    C. Montesa, N. Shibata, T. Tohei, K. Ayikama, Y. Kuromitsu, and Y. Ikuhara: Application of coincidence of reciprocal lattice point model to metal/sapphire heterointerfaces. Mater. Sci. Eng., B. 173, 234 (2010).

    CAS  Article  Google Scholar 

  19. 19.

    J. Polfus, M. Fontaine, A. Thorgensen, M. Riktor, T. Norsby, and R. Bredesen: Solubility of transition metal interstitials in proton conducting BaZr03 and similar perovskite oxides. J. Mater. Chem. A 4, 8105 (2016).

    CAS  Article  Google Scholar 

  20. 20.

    M. Islam, P. Slater, J. Tolchard, and T. Dinges: Doping and defect association in AZr03 (A=Ca, Ba) and LaM03 (M=Sr, Ga) perovskite-type ionic conductors. Dalton Trans. 0, 3061 (2004).

    CAS  Article  Google Scholar 

  21. 21.

    L. Ze, Z. Lui, S. Wang, Y. Choi, C. Zuo, and M. Liu: A mixed proton, oxygen ion, and electron conducting cathode for SOFCs based on oxide proton conductors. J. Power Sources 195, 471 (2010).

    Article  Google Scholar 

  22. 22.

    L. Yang, S. Wang, K. Blinn, M. Liu, Z. Liu, Z. Cheng, and M. Liu: Enhanced sulfur and coking tolerance of a mixed ion conductor for SOFCs: BaZr0.1Ce0.7Y0.2-xYbxA3-δ. Science 326, 126 (2009).

    CAS  Article  Google Scholar 

  23. 23.

    J.C. De Vera, K. Develos-Bagarinao, S.S. Lui, H. Kishimoto, T. Ishiyama, K. Yamaji, T. Horita, and H. Yokokawa: Sulfur poisoning of La1-xSrxo1-y Fey03-δ thin films with different compositions. J. Alloys Compd. 748, 608 (2018).

    Article  Google Scholar 

  24. 24.

    G. Rupp, H. Tellez, J. Druce, A. Limbeck, T. Ishihara, J. Kilner, and J. Fleig: Surface chemistry of La0.6Sr0.4Co03-δ thin films and its impact on the oxygen surface exchange resistance. J. Mater. Chem. A 3, 22759 (2015).

    CAS  Article  Google Scholar 

  25. 25.

    Z. Cai, M. Kubicek, H. Fleig, and B. Yildiz: Chemical heterogeneities on LaSrCoO thin films-correlations to cathode surface activity and stability. Chem. Mater. 24, 1116 (2012).

    CAS  Article  Google Scholar 

  26. 26.

    H. Kishimoto, N. Sakai, T. Horita, K. Yamaji, M. Brito, and H. Yokokawa: Cation transport behavior in SOFC cathode materials of La0.8Sr0.2Co03 and La0.8Sr0.2FeO3. Solid State Ionics 178, 1317 (2007).

    CAS  Article  Google Scholar 

  27. 27.

    T. Horita, K. Yamaji, N. Sakai, H. Yokokawa, A. Weber, and E. Ivers-Tiffee: Stability at La0.6Sr0.4Co03_δ and La0.8Sr0.2Ga0.8Mg0.2C2.8 electrolyte interface under current flow for solid oxide fuel cells. Solid State Ionics 133, 143 (2000).

    CAS  Article  Google Scholar 

  28. 28.

    K. Eguchi, N. Akasaka, H. Mitsuyasu, and Y. Nonaka: Process of solid state reaction between doped ceria and zirconia. Solid State Ionics 135, 589 (2000).

    CAS  Article  Google Scholar 

  29. 29.

    A. Tsoga, A. Gupta, A. Noumidis, and P. Nikopoulos: Gadolinia-doped ceria and yttria stabilized zirconia interfaces: regarding their application for SOFC technology. Acta Mater. 48, 4709 (2000).

    CAS  Article  Google Scholar 

  30. 30.

    J. Crank: Mathematics of Diffusion, 2nd ed. (Oxford Science Publications, Oxford, 1975) p. 36.

    Google Scholar 

Download references


This work is supported in part by the New Energy and Industrial Development Organization (NEDO) project, “Basic study on the rapid evaluation method of SOFC durability”.

Author information



Corresponding author

Correspondence to Jeffrey C. De Vero.

Supplementary materials

Supplementary materials

The supplementary material for this article can be found at

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

De Vero, J.C., Yokokawa, H., Develos-Bagarinao, K. et al. Influence of electrolyte substrates on the Sr-segregation and SrSO4 formation in La0.6Sr0.4Co0.2Fe0.8O3_δ thin films. MRS Communications 9, 236–244 (2019).

Download citation