Probing hyperbolic polaritons using infrared attenuated total reflectance micro-spectroscopy

Abstract

Hyperbolic polariton modes are highly appealing for a broad range of applications in nanophotonics, including surfaced enhanced sensing, sub-diffractional imaging, and reconfigurable metasurfaces. Here we show that attenuated total reflectance (ATR) micro-spectroscopy using standard spectroscopic tools can launch hyperbolic polaritons in a Kretschmann-Raether configuration. We measure multiple hyperbolic and dielectric modes within the naturally hyperbolic material hexagonal boron nitride as a function of different isotopic enrichments and flake thickness. This overcomes the technical challenges of measurement approaches based on nanostructuring, or scattering scanning near-field optical microscopy. Ultimately, our ATR approach allows us to compare the optical properties of small-scale materials prepared by different techniques systematically.

This is a preview of subscription content, access via your institution.

Figure 1
Figure 2
Figure 3
Figure 4

References

  1. 1.

    S.A. Maier: Plasmonics: Fundamentals and Applications (Springer, Berlin, 2007).

    Google Scholar 

  2. 2.

    D.N. Basov, M.M. Fogler, and F.J. García de Abajo: Polaritons in van der Waals materials. Science 354, 195 (2016).

    CAS  Article  Google Scholar 

  3. 3.

    A. Poddubny, I. Iorsh, P. Belov, and Y. Kivshar: Hyperbolic metamaterials. Nat. Photonics 7, 948 (2013).

    CAS  Article  Google Scholar 

  4. 4.

    M. Noginov, M. Lapine, V.A. Podolskiy, and Y. Kivshar: Focus issue: hyperbolic metamaterials. Opt. Express 21, 14895 (2013).

    Article  Google Scholar 

  5. 5.

    J.D. Caldwell, A. Kretinin, Y. Chen, V. Giannini, M.M. Fogler, Y. Francescato, C. Ellis, J.G. Tischler, C. Woods, A.J. Giles, M. Hong, K. Watanabe, T. Taniguchi, S.A. Maier, and K.S. Novoselov: Sub-diffractional, volume-confined polaritons in the natural hyperbolic material hexagonal boron nitride. Nat. Commun. 5, 5221 (2014).

    CAS  Article  Google Scholar 

  6. 6.

    P. Li, M. Lewin, A.V. Kretinin, J.D. Caldwell, K.S. Novoselov, T. Taniguchi, K. Watanabe, F. Gaussmann, and T. Taubner: Hyperbolic phonon-polaritons in boron nitride for near-field optical imaging and focusing. Nat. Commun. 6, 7507 (2015).

    CAS  Article  Google Scholar 

  7. 7.

    S. Dai, Z. Fei, Q. Ma, A.S. Rodin, M. Wagner, A.S. McLeod, M.K. Liu, W. Gannett, W. Regan, M. Thiemens, G. Dominguez, A.H. Castro Neto, A. Zettl, F. Keilmann, P. Jarillo-Herrero, M.M. Fogler, and D.N. Basov: Tunable phonon polaritons in atomically thin van der Waals crystals of boron nitride. Science (Washington) 343, 1125 (2014).

    CAS  Article  Google Scholar 

  8. 8.

    S. Dai, Q. Ma, T. Anderson, A.S. McLeod, Z. Fei, M.K. Liu, M. Wagner, K. Watanabe, T. Taniguchi, M. Thiemens, F. Keilmann, P. Jarillo-Herrero, M.M. Fogler, and D.N. Basov: Subdiffractional focusing and guiding of polaritonic rays in a natural hyperbolic material. Nat. Commun. 6, 6963 (2015).

    CAS  Article  Google Scholar 

  9. 9.

    Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang: Far-field optical hyperlens magnifying sub-diffraction limited objects. Science 315, 1686 (2007).

    CAS  Article  Google Scholar 

  10. 10.

    F.J. Alfaro-Mozaz, P. Alonso-González, S. Vélez, I. Dolado, M. Autore, S. Mastel, F. Casanova, L.E. Hueso, P. Li, A.Y. Nikitin, and R. Hillenbrand: Nanoimaging of resonating hyperbolic polaritons in linear boron nitride antennas. Nat. Commun. 8, 15624 (2017).

    CAS  Article  Google Scholar 

  11. 11.

    T.G. Folland, A. Fali, S.T. White, J.R. Matson, S. Liu, N.A. Aghamiri, J.H. Edgar, R.F. Haglund, and Y. Abate and J.D. Caldwell: Reconfigurable Mid-Infrared Hyperbolic Metasurfaces using Phase-Change Materials, (arXiv:1805.08292, 2018).

    Google Scholar 

  12. 12.

    M. Autore, P. Li, I. Dolado, F.J. Alfaro-Mozaz, R. Esteban, A. Atxabal, F. Casanova, L.E. Hueso, P. Alonso-González, J. Aizpurua, A.Y. Nikitin, S. Vélez, and R. Hillenbrand: Boron nitride nanoresonators for phonon-enhanced molecular vibrational spectroscopy at the strong coupling limit. Light: Sci. Appl. 7, 17172 (2018).

    CAS  Article  Google Scholar 

  13. 13.

    K.V. Sreekanth, Y. Alapan, M. ElKabbash, E. Ilker, M. Hinczewski, U.A. Gurkan, A. De Luca, and G. Strangi: Extreme sensitivity biosensing platform based on hyperbolic metamaterials. Nat. Mater. 15, 621 (2016).

    CAS  Article  Google Scholar 

  14. 14.

    A.J. Hoffman, L. Alekseyev, S.S. Howard, K.J. Franz, D. Wasserman, V.A. Podolskiy, E.E. Narimanov, D.L. Sivco, and C. Gmachl: Negative refraction in semiconductor metamaterials. Nat. Mater. 6, 946 (2007).

    CAS  Article  Google Scholar 

  15. 15.

    J. Yao, Z. Liu, Y. Liu, Y. Wang, C. Sun, G. Bartal, A.M. Stacy, and X. Zhang: Optical negative refraction in bulk metamaterials of nanowires. Science 321, 930 (2008).

    CAS  Article  Google Scholar 

  16. 16.

    K. Korzeb, M. Gajc, and D.A. Pawlak: Compendium of natural hyperbolic materials. Opt. Express 23, 25406 (2015).

    CAS  Article  Google Scholar 

  17. 17.

    Z. Zebo, C. Jianing, W. Yu, W. Ximiao, C. Xiaobo, L. Pengyi, X. Jianbin, X. Weiguang, C. Huanjun, D. Shaozhi, and X. Ningsheng: Highly confined and tunable hyperbolic phonon polaritons in van der Waals semiconducting transition metal oxides. Adv. Mater. 30, 1705318 (2018).

    Article  CAS  Google Scholar 

  18. 18.

    J.D. Caldwell, L. Lindsey, V. Giannini, I. Vurgaftman, T. Reinecke, S.A. Maier, and O.J. Glembocki: Low-loss, infrared and terahertz nanophotonics with surface phonon polaritons. Nanophotonics 4, 44 (2015).

    CAS  Article  Google Scholar 

  19. 19.

    L.V. Brown, M. Davanco, Z. Sun, A. Kretinin, Y. Chen, J.R. Matson, I. Vurgaftman, N. Sharac, A.J. Giles, M.M. Fogler, T. Taniguchi, K. Watanabe, K.S. Novoselov, S.A. Maier, A. Centrone, and J.D. Caldwell: Nanoscale mapping and spectroscopy of nonradiative hyperbolic modes in hexagonal boron nitride nanostructures. Nano Lett. 18, 1628 (2018).

    CAS  Article  Google Scholar 

  20. 20.

    A.J. Giles, S. Dai, I. Vurgaftman, T. Hoffman, S. Liu, L. Lindsay, C.T. Ellis, N. Assefa, I. Chatzakis, T.L. Reinecke, J.G. Tischler, M.M. Fogler, J.H. Edgar, D.N. Basov, and J.D. Caldwell: Ultralow-loss polaritons in isotopically pure boron nitride. Nat. Mater. 17, 134 (2018).

    CAS  Article  Google Scholar 

  21. 21.

    P. Li, I. Dolado, F.J. Alfaro-Mozaz, F. Casanova, L.E. Hueso, S. Liu, J.H. Edgar, A.Y. Nikitin, S. Vélez, and R. Hillenbrand: Infrared hyperbolic metasurface based on nanostructured van der Waals materials. Science 359, 892 (2018).

    CAS  Article  Google Scholar 

  22. 22.

    T. Vuong, S. Liu, A. Van der Lee, R. Cuscó, L. Artús, T. Michel, P. Valvin, J. Edgar, G. Cassabois, and B. Gil: Isotope engineering of van der Waals interactions in hexagonal boron nitride. Nat. Mater. 17, 152 (2018).

    CAS  Article  Google Scholar 

  23. 23.

    T. Low, A. Chaves, J.D. Caldwell, A. Kumar, N.X. Fang, P. Avouris, T.F. Heinz, F. Guinea, L. Martin-Moreno, and F.H.L. Koppens: Polaritons in layered two-dimensional materials. Nat. Mater. 16, 182 (2017).

    CAS  Article  Google Scholar 

  24. 24.

    S.-I. Uchida and S. Tanaka: Optical phonon modes and localized effective charges of transition-metal dichalcogenides. J. Phys. Soc. Jpn. 45, 153 (1978).

    CAS  Article  Google Scholar 

  25. 25.

    H. Raether: Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, Berlin, New York, 1988).

    Google Scholar 

  26. 26.

    X. Dai, L. Jiang, and Y. Xiang: Tunable THz angular/frequency filters in the modified Kretschmann Raether configuration with the insertion of single layer graphene. IEEE Photonics J. 7, 1 (2015).

    CAS  Google Scholar 

  27. 27.

    N.C. Passler and A. Paarmann: Generalized 4 × 4 matrix formalism for light propagation in anisotropic stratified media: study of surface phonon polaritons in polar dielectric heterostructures. J. Opt. Soc. Am. B 34, 2128 (2017).

    CAS  Article  Google Scholar 

  28. 28.

    T.W.W. Maß and T. Taubner: Incident angle-tuning of infrared antenna array resonances for molecular sensing. ACS Photonics 2, 1498 (2015).

    Article  CAS  Google Scholar 

  29. 29.

    L. Luo and T. Tang: Goos-Hänchen effect in Kretschmann configuration with hyperbolic metamaterials. Superlattices Microstruct. 94, 85 (2016).

    CAS  Article  Google Scholar 

  30. 30.

    C. Zhang, N. Hong, C. Ji, W. Zhu, X. Chen, A. Agrawal, Z. Zhang, T.E. Tiwald, S. Schoeche, J.N. Hilfiker, L.J. Guo, and H.J. Lezec: Robust extraction of hyperbolic metamaterial permittivity using total internal reflection ellipsometry. ACS Photonics 5, 2234 (2018).

    CAS  Article  Google Scholar 

  31. 31.

    M. Born and E. Wolf: Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (Cambridge University Press, Cambridge, New York, 1999).

    Google Scholar 

  32. 32.

    T. Taniguchi and K. Watanabe: Synthesis of high-purity boron nitride single crystals under high pressure by using Ba-BN solvent. J. Cryst. Growth 303, 525 (2007).

    CAS  Article  Google Scholar 

  33. 33.

    S. Liu, R. He, L. Xu, J. Li, B. Liu, and J.H. Edgar: Single Crystal growth of mm-sized monoisotopic hexagonal boron nitride. Chem. Mater. (2018) DOI:10.1021/acs.chemmater.8b02589

    Google Scholar 

  34. 34.

    E. Yoxall, M. Schnell, A.Y. Nikitin, O. Txoperena, A. Woessner, M.B. Lundeberg, F. Casanova, L.E. Hueso, F.H.L. Koppens, and R. Hillenbrand: Direct observation of ultraslow hyperbolic polariton propagation with negative phase velocity. Nat. Photonics 9, 674 (2015).

    CAS  Article  Google Scholar 

  35. 35.

    J.A. Schuller, R. Zia, T. Taubner, and M.L. Brongersma: Dielectric metamaterials based on electric and magnetic resonances of silicon carbide particles. Phys. Rev. Lett. 99, 107401 (2007).

    Article  CAS  Google Scholar 

  36. 36.

    A.I. Kuznetsov, A.E. Miroshnichenko, M.L. Brongersma, Y.S. Kivshar, and B. Luk’yanchuk: Optically resonant dielectric nanostructures. Science 354, aag2472 (2016).

  37. 37.

    J.D. Caldwell, O.J. Glembocki, N. Sharac, J.P. Long, J.O. Owrutsky, I. Vurgaftman, J.G. Tischler, F.J. Bezares, V. Wheeler, N.D. Bassim, L. Shirey, Y. Francescato, V. Giannini, and S.A. Maier: Low-loss, extreme sub-diffraction photon confinement via silicon carbide surface phonon polariton nanopillar resonators. Nano Lett. 13, 3690 (2013).

    CAS  Article  Google Scholar 

  38. 38.

    I. Staude, and J. Schilling: Metamaterial-inspired silicon nanophotonics. Nat. Photonics 11, 274 (2017).

    CAS  Article  Google Scholar 

  39. 39.

    J.C. Ginn, I. Brener, D.W. Peters, J.R. Wendt, J.O. Stevens, P.F. Hines, L.I. Basilio, L.K. Warne, J.F. Ihlefeld, P.G. Clem, and M.B. Sinclair: Realizing optical magnetism from dielectric metamaterials. Phys. Rev. Lett. 108, 097402 (2012).

    Article  CAS  Google Scholar 

  40. 40.

    A. Howes, W. Wang, I. Kravchenko, and J. Valentine: Dynamic transmission control based on all-dielectric Huygens metasurfaces. Optica 5, 787 (2018).

    CAS  Article  Google Scholar 

  41. 41.

    W. Li and J. Valentine: Metamaterial perfect absorber based hot electron photodetection. Nano Lett. 14, 3510 (2014).

    CAS  Article  Google Scholar 

  42. 42.

    A.J. Giles, S. Dai, O.J. Glembocki, A.V. Kretinin, Z. Sun, C.T. Ellis, J.G. Tischler, T. Taniguchi, K. Watanabe, M.M. Fogler, K.S. Novoselov, D.N. Basov, and J.D. Caldwell: Imaging of anomalous internal reflections of hyperbolic phonon-polaritons in hexagonal boron nitride. Nano Lett. 16, 3858 (2016).

    CAS  Article  Google Scholar 

  43. 43.

    S. Ishii, A.V. Kildishev, E.E. Narimanov, V.M. Shalaev, and V.P. Drachev: Sub-wavelength interference pattern from volume plasmon polaritons in a hyperbolic medium. Laser Photonics Rev. 7, 265 (2013).

    CAS  Article  Google Scholar 

Download references

Acknowledgments

Support for J.D.C., J.R.N., and T.G.F. was provided by the Office of Naval Research through grant number N000141812107 and through funds administered by the US Naval Research Laboratory through the Nanoscience Institute. The initial efforts of this work were funded through the NRL Long-Term Training program. T.T. and T.W.W.M. acknowledge support from the Deutsche Forschungsgemeinschaft (DFG) within SPP-1327 “Sub-100nm structures for optical and biomedical applications” and the Ministry of Innovation, Science, Research and Technology of the German State of North Rhine-Westphalia. Support for J.H.E. and S.L. provided from the Materials Engineering and Processing program of the National Science Foundation, award number CMMI 1538127 is greatly appreciated.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Joshua D. Caldwell.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Folland, T.G., Maß, T.W.W., Matson, J.R. et al. Probing hyperbolic polaritons using infrared attenuated total reflectance micro-spectroscopy. MRS Communications 8, 1418–1425 (2018). https://doi.org/10.1557/mrc.2018.205

Download citation