Surface modification of L605 by oxygen plasma immersion ion implantation for biomedical applications

Abstract

Co-Cr alloys, more specifically L605, have superior mechanical properties and high-corrosion resistance, making them suitable materials for cardiovascular application. However, metallic materials for biomedical applications require finely tuned surface properties to improve the material behavior in a physiological environment. Oxygen plasma immersion ion implantation was performed on an L605 alloy, after an electropolishing pre-treatment. The oxidized layer was found to be rich in Co and O, it did not show any trace of Cr, and resulted in nanostructured. The corrosion properties were profoundly changed. Endothelial cells showed high viability after 7 days of contact with some modified surfaces.

This is a preview of subscription content, access via your institution.

Table I
Table II
Figure 1
Figure 2
Figure 3
Figure 4

References

  1. 1.

    P. Qi, M.F. Maitz, and N. Huang: Surface modifications of cardiovascular materials and implants. Surf. Coat. Technol. 233, 80 (2013).

    CAS  Article  Google Scholar 

  2. 2.

    B. O’Brien, and W. Carroll: The evolution of cardiovascular stent materials and surfaces in response to clinical drivers: a review. Acta Biomater. 5, 945 (2009).

    Article  Google Scholar 

  3. 3.

    J.P. Shingledecker, D.B. Glanton, R.L. Martin, B.L. Sparks, and R.W. Swindeman: Tensile and Creep-Rupture Evaluation of A New Heat of Haynes Alloy 25; ORNL TM-2006/609; U.S. Dept. of Energy, 2007, p. 197.

    Google Scholar 

  4. 4.

    P. Poncin, and J. Proft: Stent tubing: understanding the desired attributes. Medical Device Materials: Proceedings from the Materials & Processes for Medical Devices Conference 2003, 8-10 September 2003; ASM International, University of Michigan: Anaheim, California, 2004.

    Google Scholar 

  5. 5.

    H.F. Hildebrand, and M. Champy: Biocompatibility of Co-Cr-Ni Alloys, 1st ed. (Springer, NATO ADV SCI I A-LIF, New York, 1985), pp. 185.

    Google Scholar 

  6. 6.

    D.R. Haynes, T.N. Crotti, and M.R. Haywood: Corrosion of and changes in biological effects of cobalt-chrome alloy and 316L stainless steel prosthetic particles with age. J. Biomed. Mater. Res. 49, 167 (2000).

    CAS  Article  Google Scholar 

  7. 7.

    S.K. Jaganathan, E. Supriyanto, S. Murugesan, A. Balaji, and M.K. Asokan: Biomaterials in cardiovascular research: applications and clinical implications. BioMed. Res. Int. 3, 459 (2014).

    Google Scholar 

  8. 8.

    E.S. Gadelmawla, M.M. Koura, T.M.A. Maksoud, I.M. Elewa, and H.H. Soliman: Roughness parameters. J. Mater. Process. Technol. 123, 133 (2002).

    Article  Google Scholar 

  9. 9.

    V. Montaño-Machado, C. Noël, P. Chevallier, S. Turgeon, L. Houssiau, E. Pauthe, J.-J. Pireaux, and D. Mantovani: Interaction of phosphorylcholine with fibronectin coatings: surface characterization and biological performances. Appl. Surf. Sci. 396, 1613 (2016).

    Article  Google Scholar 

  10. 10.

    J. Favre, Y. Koizumi, A. Chiba, D. Fabregue, and E. Maire: Deformation behavior and dynamic recrystallization of biomedical Co-Cr-W-Ni (L-605) alloy. Metall. Mater. Trans. A 44, 2819 (2013).

    CAS  Article  Google Scholar 

  11. 11.

    T. Kilner, R.M. Pilliar, G.C. Weatherly, and C. Allibert: Phase identification and incipient melting in a cast Co-Cr surgical implant alloy. J. Biomed. Mater. Res. 16, 63 (1982).

    CAS  Article  Google Scholar 

  12. 12.

    P. Poncin, B. Gruez, P. Missillier, P. Comte-Graz, and J.L. Proft: L605 precipitates and their effects on stent applications, edited by R. Venugopalan and M. Wu (Proc. Med. Mat. III, Mater. Process. Med. Dev. Conf., Boston, MA, 2005), p. 85.

    Google Scholar 

  13. 13.

    K. Yamanaka, M. Mori, K. Kuramoto, and A. Chiba: Development of new Co-Cr-W-based biomedical alloys: effects of microalloying and thermomechanical processing on microstructures and mechanical properties. Mater. Des. 55, 987 (2014).

    CAS  Article  Google Scholar 

  14. 14.

    E. Bettini, T. Eriksson, M. Boström, C. Leygraf, and J. Pana: Influence of metal carbides on dissolution behavior of biomedical CoCrMo alloy: SEM, TEM and AFM studies. Electrochim. Acta 56, 9413 (2011).

    CAS  Article  Google Scholar 

  15. 15.

    V. Kaeppelin, M. Carrère, F. Torregrosa, and G. Mathieu: Characterisation of an industrial plasma immersion ion implantation reactor with a Langmuir probe and an energy-selective mass spectrometer. Surf. Coat. Technol. 156, 119 (2002).

    CAS  Article  Google Scholar 

  16. 16.

    Y. Wang, and J.K. Olthoff: Ion energy distributions in inductively coupled radio-frequency discharges in argon, nitrogen, oxygen, chlorine, and their mixtures. J. Appl. Phys. 85, 6358 (1999).

    CAS  Article  Google Scholar 

  17. 17.

    M. Nastasi, and J.W. Mayer: Ion Implantation and Synthesis of Materials, 1st ed. (Springer, Springer-Verlag, Berlin Heidelberg, 2006), pp. 263.

    Google Scholar 

  18. 18.

    W. Ensinger: Low energy ion assist during deposition - an effective tool for controlling thin film microstructure. Instrum. Methods Phys. Res. B. 796, 127 (1997).

    Google Scholar 

  19. 19.

    K. Suzuki, K. Konishi, K. Nakamura, and H. Sugai: Effects of capacitance termination of the internal antenna in inductively coupled plasma. Plasma Sources Sci. Technol. 9, 199 (2000).

    CAS  Article  Google Scholar 

  20. 20.

    D.J. Miller, M.C. Biesinger, and N.S. McIntyre: Interactions of CO2 and CO at fractional atmosphere pressures with iron and iron oxide surfaces: one possible mechanism for surface contamination? Surf. Interface Anal. 33, 299 (2002).

    CAS  Article  Google Scholar 

  21. 21.

    M.C. Biesinger, B.P. Payne, A.P. Grosvenor, L.W.M. Lau, A.R. Gerson, and R.S.C. Smart: Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Cr, Mn, Fe, Co and Ni. Appl. Surf. Sci. 257, 2717 (2011).

    CAS  Article  Google Scholar 

  22. 22.

    G.T.K. Swami: Oxidation studies of Co-Cr thin films for use as magnetic media. Appl. Surf. Sci. 21, 151 (1985).

    CAS  Article  Google Scholar 

  23. 23.

    F.H. Stott, G.C. Wood, and M.G. Hobb: A comparison of the oxidation behavior of Fe-Cr-AI, Ni-Cr-AI, and Co-Cr-Al alloys. Oxid. Met. 3, 103 (1971).

    CAS  Article  Google Scholar 

  24. 24.

    R. Behrisch: Sputtering by Particle Bombardment I: Physical Sputtering of Single-Element Solids, 1st ed. (Springer, Berlin, Heidelberg, 1981), pp. 145.

    Google Scholar 

  25. 25.

    J. Lutz, C. Díaz, J.A. García, C. Blawert, and S. Mändl: Corrosion behaviour of medical CoCr alloy after nitrogen plasma immersion ion implantation. Surf. Coat. Technol. 205, 3043 (2011).

    CAS  Article  Google Scholar 

  26. 26.

    R. Suriyaprabha, V. Rajendran, G. Karunakaran, and N. Kannan: Effect of contact angle, zeta potential and particles size on the in vitro studies of Al2O3 and SiO2 nanoparticles. IET Nanobiotechnol. 9, 27 (2015).

    Article  Google Scholar 

  27. 27.

    M.G. Permenter, W.E. Dennis, T.E. Sutto, D.A. Jackson, J.A. Lewis, and J.D. Stallings: Exposure to cobalt causes transcriptomic and proteomic changes in two rat liver derived cell lines. PLoS One 8, 1 (2013).

    Article  Google Scholar 

  28. 28.

    L.O. Simonsen, H. Harbak, and P. Bennekou: Cobalt metabolism and toxicology-a brief update. Sci. Total Environ. 432, 210 (2012).

    CAS  Article  Google Scholar 

Download references

Acknowledgments

This work was partially funded by NSERC-Canada, FRQ-NT-Quebec, and CFI-Canada. VMM was awarded a doctoral scholarship from Conacyt—National Council of Science and Technology, Mexico. LMA was awarded an undergraduate scholarship from CNPq—CAPES Foundation and Ministry of Education of Brazil. CP and DM were recipients of the Linkage Grant from Quebec/Italy sub-commission of the Quebec Ministry of Intl Relations.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Diego Mantovani.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

de Andrade, L.M., Paternoster, C., Montaño-Machado, V. et al. Surface modification of L605 by oxygen plasma immersion ion implantation for biomedical applications. MRS Communications 8, 1404–1412 (2018). https://doi.org/10.1557/mrc.2018.202

Download citation